Chemoreceptor regulation of breathing is a form of negative feedback. The goal of this system is to keep the pH of the blood stream within normal neutral ranges, around 7.35.
Chemoreceptors
A chemoreceptor, also known as chemosensor, is a sensory receptor that transduces a chemical signal into an action potential. The action potential is sent along nerve pathways to parts of the brain, which are the integrating centers for this type of feedback. There are many types of chemoreceptors in the body, but only a few of them are involved in respiration.
The respiratory chemoreceptors work by sensing the pH of their environment through the concentration of hydrogen ions. Because most carbon dioxide is converted to carbonic acid (and bicarbonate) in the bloodstream, chemoreceptors are able to use blood pH as a way to measure the carbon dioxide levels of the bloodstream.
The main chemoreceptors involved in respiratory feedback are:
- Central chemoreceptors: These are located on the ventrolateral surface of medulla oblongata and detect changes in the pH of spinal fluid. They can be desensitized over time from chronic hypoxia (oxygen deficiency) and increased carbon dioxide.
- Peripheral chemoreceptors: These include the aortic body, which detects changes in blood oxygen and carbon dioxide, but not pH, and the carotid body which detects all three. They do not desensitize, and have less of an impact on the respiratory rate compared to the central chemoreceptors.
Chemoreceptor Negative Feedback
Negative feedback responses have three main components: the sensor, the integrating sensor, and the effector. For the respiratory rate, the chemoreceptors are the sensors for blood pH, the medulla and pons form the integrating center, and the respiratory muscles are the effector.
Consider a case in which a person is hyperventilating from an anxiety attack. Their increased ventilation rate will remove too much carbon dioxide from their body. Without that carbon dioxide, there will be less carbonic acid in blood, so the concentration of hydrogen ions decreases and the pH of the blood rises, causing alkalosis.
In response, the chemoreceptors detect this change, and send a signal to the medulla, which signals the respiratory muscles to decrease the ventilation rate so carbon dioxide levels and pH can return to normal levels.
There are several other examples in which chemoreceptor feedback applies. A person with severe diarrhea loses a lot of bicarbonate in the intestinal tract, which decreases bicarbonate levels in the plasma. As bicarbonate levels decrease while hydrogen ion concentrations stays the same, blood pH will decrease (as bicarbonate is a buffer) and become more acidic.
In cases of acidosis, feedback will increase ventilation to remove more carbon dioxide to reduce the hydrogen ion concentration. Conversely, vomiting removes hydrogen ions from the body (as the stomach contents are acidic), which will cause decreased ventilation to correct alkalosis.
Chemoreceptor feedback also adjusts for oxygen levels to prevent hypoxia, though only the peripheral chemoreceptors sense oxygen levels. In cases where oxygen intake is too low, feedback increases ventilation to increase oxygen intake.
A more detailed example would be that if a person breathes through a long tube (such as a snorkeling mask) and has increased amounts of dead space, feedback will increase ventilation.
Respiratory feedback
The chemoreceptors are the sensors for blood pH, the medulla and pons form the integrating center, and the respiratory muscles are the effector.