Mining Publication: Modeling the Effect of Barometric Pressure Changes on Spontaneous Heating in Bleederless Longwall Panels
Original creation date: March 2010
Barometric pressure changes affect air density, leading to change in the mass of the gas in the gob. When the barometric pressure decreases, the volume of gas in the gob expands, while the volume of gas contracts when the barometric pressure increases, causing the gob to breathe out and in. Although the concept of gob "breathing" is simple, its effect on spontaneous heating of coal in the gob area is not clear. In this study, computational fluid dynamics (CFD) simulations were conducted to model the spontaneous heating of coal in longwall gob area under measured barometric pressure changes. A single longwall panel using a bleederless ventilation system was simulated. If there is no barometric pressure change, the intake airflow rate is equal to the return airflow rate. When the barometric pressure changes, these two airflow rates are no longer equal, and the difference between the two airflow rates represents the airflow rate the gob breathes in and out. The effect of inflow and outflow of gas on the potential spontaneous heating in the gob was investigated using the CFD model developed in our previous study. The effect of barometric pressure changes on the spontaneous heating was found to be dependent on the gob permeability and the coal oxidation rate. The effect of barometric pressure changes on oxygen concentrations in the gob was also examined.
Authors: L Yuan, AC Smith
Conference Paper - March 2010
NIOSHTIC2 Number: 20036469
2010 SME Annual Meeting and Exhibit, February 28 - March 3, Phoenix, Arizona, preprint 10-210. Littleton, CO: Society for Mining, Metallurgy, and Exploration, Inc., 2010; :1-7
See Also
- Analysis and Prediction of Longwall Methane Emissions: A Case Study in the Pocahontas No. 3 Coalbed, VA
- Control of Longwall Gob Gas With Cross-Measure Boreholes (Upper Kittanning Coalbed)
- Elastic and Shear Moduli of Coal Measure Rocks Derived from Basic Well Logs Using Fractal Statistics and Radial Basis Functions
- Explosion Pressure Design Criteria for New Seals in U.S. Coal Mines
- A Gas Pressure-Based Drift Round Blast Design Methodology
- Modeling the Effect of Seal Leakage on Spontaneous Heating in a Longwall Gob Area
- Stochastic Modeling of Gob Gas Venthole Production Performances in Active and Completed Longwall Panels of Coal Mines
- Technology News 489 - Reducing the Danger of Explosions in Sealed Areas (Gobs) in Mines
- Technology News 490 - An Inexpensive Device for Monitoring Explosions in Sealed Areas of Underground Mines
- Tying Acceleration and GPS Location Information Together To Create a Mine Management Tool
- Page last reviewed: 9/21/2012
- Page last updated: 9/21/2012
- Content source: National Institute for Occupational Safety and Health, Mining Program