Calibrated automated thrombogram

The calibrated automated thrombogram (CAT or CT) is a thrombin generation assay (TGA) and global coagulation assay (GCA) which can be used as a coagulation test to assess thrombotic risk.[1][2] It is the most widely used TGA.[3] The CAT is a semi-automated test performed in a 96-well plate and requires specialized technologists to be performed.[3] As a result, it has seen low implementation in routine laboratories and has been more limited to research settings.[3][4] Lack of standardization with the CAT has also led to difficulties in study-to-study comparisons in research.[3][5] An example of a specific commercial CAT is the Thrombinoscope by Thrombinoscope BV (now owned by Diagnostica Stago).[6]

The CAT can be used to measure thrombogram parameters such as the endogenous thrombin potential (ETP)[2][7] and to assess activated protein C resistance (APCR).[5] The CAT ETP-based APCR test is especially sensitive to estrogen-induced procoagulation, such as with combined oral contraceptives.[2][5][8]

In 2018, a commercial fully-automated TGA system and alternative to the CAT called the ST Genesia debuted.[3] It should allow for more widespread adoption of TGAs in clinical laboratories.[3] The ST-Genesia system also shows enhanced reproducibility compared to the CAT.[3]

References

  1. Hemker HC, Giesen P, AlDieri R, Regnault V, de Smed E, Wagenvoord R, Lecompte T, Béguin S (2002). "The calibrated automated thrombogram (CAT): a universal routine test for hyper- and hypocoagulability". Pathophysiol Haemost Thromb. 32 (5–6): 249–53. doi:10.1159/000073575. PMID 13679651.
  2. 1 2 3 Lim HY, Donnan G, Nandurkar H, Ho P (January 2022). "Global coagulation assays in hypercoagulable states". J Thromb Thrombolysis. doi:10.1007/s11239-021-02621-1. PMID 34997471.
  3. 1 2 3 4 5 6 7 Reda S, Morimont L, Douxfils J, Rühl H (August 2020). "Can We Measure the Individual Prothrombotic or Prohemorrhagic Tendency by Global Coagulation Tests?". Hamostaseologie. 40 (3): 364–378. doi:10.1055/a-1153-5824. PMID 32726831.
  4. Lim HY, Leemaqz SY, Torkamani N, Grossmann M, Zajac JD, Nandurkar H, Ho P, Cheung AS (July 2020). "Global Coagulation Assays in Transgender Women on Oral and Transdermal Estradiol Therapy". J Clin Endocrinol Metab. 105 (7). doi:10.1210/clinem/dgaa262. PMID 32413907.
  5. 1 2 3 Morimont L, Haguet H, Dogné JM, Gaspard U, Douxfils J (2021). "Combined Oral Contraceptives and Venous Thromboembolism: Review and Perspective to Mitigate the Risk". Front Endocrinol (Lausanne). 12: 769187. doi:10.3389/fendo.2021.769187. PMC 8697849. PMID 34956081.
  6. Kintigh J, Monagle P, Ignjatovic V (January 2018). "A review of commercially available thrombin generation assays". Res Pract Thromb Haemost. 2 (1): 42–48. doi:10.1002/rth2.12048. PMC 6055498. PMID 30046705.
  7. Duarte RC, Ferreira CN, Rios DR, Reis HJ, Carvalho MD (2017). "Thrombin generation assays for global evaluation of the hemostatic system: perspectives and limitations". Rev Bras Hematol Hemoter. 39 (3): 259–265. doi:10.1016/j.bjhh.2017.03.009. PMC 5568585. PMID 28830606.
  8. Tchaikovski SN, Rosing J (July 2010). "Mechanisms of estrogen-induced venous thromboembolism". Thromb Res. 126 (1): 5–11. doi:10.1016/j.thromres.2010.01.045. PMID 20163835.


This article is issued from Offline. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.