AMD PowerPlay

AMD PowerPlay is the brand name for a set of technologies for the reduction of the energy consumption implemented in several of AMD's graphics processing units and APUs supported by their proprietary graphics device driver "Catalyst". AMD PowerPlay is also implemented into ATI/AMD chipsets which integrated graphics and into AMD's Imageon handheld chipset, that was sold to Qualcomm in 2008.

AMD PowerPlay
Design firmAdvanced Micro Devices
TypeDynamic frequency scaling

Besides the desirable goal to reduce energy consumption, AMD PowerPlay helps to lower the noise levels created by the cooling in desktop computers and extend battery life in mobile devices. AMD PowerPlay has been succeeded by AMD PowerTune.[1]

History

The technology was first implemented in Mobility Radeon products for notebooks, to provide a set of features to lower the power consumption of the laptop computer. The technology consists of several technologies; examples include dynamic clock adjustments when the notebook is not plugged into a power socket and allowing different backlight brightness levels of the notebook LCD monitor. The technology was updated with the release of each generation of mobile GPUs. The latest release is ATI PowerPlay 7.0.[2]

Since the release of Radeon HD 3000 Series, PowerPlay was implemented to further reduce the power consumption of desktop GPUs.

Currently supported products

The official ATI support list[3] lists only the ATI Radeon 3800 series desktop cards, but PowerPlay is also a listed feature of all Radeon HD 3000/4000/5000 series products. Independent reviews indicated that the latter was already lower power compared to other 3D cards, so the addition of PowerPlay to that line was clearly intended to address an increasingly power, heat and noise conscious market. The ATI Radeon HD 2600 line – which does not support PowerPlay – was being phased out in favour of the 3000 series at the same price points that also support PCI Express 2.0, DirectX 10.1 and faster GDDR3 memory.

The entire ATI Radeon Xpress line is also supported for single board computers which tend to be power sensitive and used in large installations where configuration and boot image control are major concerns.

Support for "PowerPlay" was added to the Linux kernel driver "amdgpu" on November 11, 2015.[4]

Desktop versus laptop

The main difference between the desktop and laptop versions is that the desktop version cuts the features which are aimed at notebook usage, including variable LCD backlight brightness. The PowerPlay technology for Radeon desktop graphics features three usage scenarios: normal mode (2D mode), light gaming mode and intensive gaming mode (3D mode), replacing notebook scenarios (running on AC power or battery power). Tests indicated that the lowest core clock frequency of an RV670 GPU core can reach as low as 300 MHz with PowerPlay technology enabled.[5]

Feature overview for AMD APUs

The following table shows features of AMD's processors with 3D graphics, including APUs (see also: List of AMD processors with 3D graphics).

Platform High, standard and low power Low and ultra-low power
CodenameServer Basic Toronto
Micro Kyoto
Desktop Performance Raphael
Mainstream Llano Trinity Richland Kaveri Kaveri Refresh (Godavari) Carrizo Bristol Ridge Raven Ridge Picasso Renoir Cezanne
Entry
Basic Kabini Dalí
MobilePerformance Renoir Cezanne Rembrandt Dragon Range
Mainstream Llano Trinity Richland Kaveri Carrizo Bristol Ridge Raven Ridge Picasso Renoir
Lucienne
Cezanne
Barceló
Phoenix
Entry Dalí Mendocino
Basic Desna, Ontario, Zacate Kabini, Temash Beema, Mullins Carrizo-L Stoney Ridge Pollock
Embedded Trinity Bald Eagle Merlin Falcon,
Brown Falcon
Great Horned Owl Grey Hawk Ontario, Zacate Kabini Steppe Eagle, Crowned Eagle,
LX-Family
Prairie Falcon Banded Kestrel River Hawk
ReleasedAug 2011Oct 2012Jun 2013Jan 2014 2015Jun 2015Jun 2016Oct 2017Jan 2019Mar 2020 Jan 2021Jan 2022Sep 2022Jan 2023Jan 2011May 2013Apr 2014May 2015Feb 2016Apr 2019Jul 2020Jun 2022Nov 2022
CPU microarchitecture K10 Piledriver Steamroller Excavator "Excavator+"[6] Zen Zen+ Zen 2 Zen 3 Zen 3+ Zen 4 Bobcat Jaguar Puma Puma+[7] "Excavator+" Zen Zen+ "Zen 2+"
ISAx86-64 v1x86-64 v2x86-64 v3x86-64 v4x86-64 v1x86-64 v2x86-64 v3
Socket Desktop Performance AM5
Mainstream AM4
Entry FM1 FM2 FM2+ FM2+[lower-alpha 1], AM4 AM4
Basic AM1 FP5
Other FS1 FS1+, FP2 FP3 FP4 FP5 FP6 FP7 FL1 FP7
FP7r2
FP8
? FT1 FT3 FT3b FP4 FP5 FT5 FP5 FT6
PCI Express version 2.0 3.0 4.0 5.0 4.0 2.0 3.0
CXL
Fab. (nm) GF 32SHP
(HKMG SOI)
GF 28SHP
(HKMG bulk)
GF 14LPP
(FinFET bulk)
GF 12LP
(FinFET bulk)
TSMC N7
(FinFET bulk)
TSMC N6
(FinFET bulk)
CCD: TSMC N5
(FinFET bulk)

cIOD: TSMC N6
(FinFET bulk)
TSMC 4nm
(FinFET bulk)
TSMC N40
(bulk)
TSMC N28
(HKMG bulk)
GF 28SHP
(HKMG bulk)
GF 14LPP
(FinFET bulk)
GF 12LP
(FinFET bulk)
TSMC N6
(FinFET bulk)
Die area (mm2)228246245245250210[8]156 180210CCD: (2x) 70
cIOD: 122
17875 (+ 28 FCH)107?125149~100
Min TDP (W)3517121015105354.543.95106128
Max APU TDP (W)10095654517054182565415
Max stock APU base clock (GHz)33.84.14.13.73.83.63.73.84.03.34.74.31.752.222.23.22.61.23.352.8
Max APUs per node[lower-alpha 2]11
Max core dies per CPU1211
Max CCX per core die1211
Max cores per CCX482424
Max CPU[lower-alpha 3] cores per APU481682424
Max threads per CPU core1212
Integer pipeline structure3+32+24+24+2+11+3+3+1+21+1+1+12+24+24+2+1
i386, i486, i586, CMOV, NOPL, i686, PAE, NX bit, CMPXCHG16B, AMD-V, RVI, ABM, and 64-bit LAHF/SAHFYes Yes
IOMMU[lower-alpha 4]v2v1v2
BMI1, AES-NI, CLMUL, and F16C YesYes
MOVBEYes
AVIC, BMI2, RDRAND, and MWAITX/MONITORX Yes
SME[lower-alpha 5], TSME[lower-alpha 5], ADX, SHA, RDSEED, SMAP, SMEP, XSAVEC, XSAVES, XRSTORS, CLFLUSHOPT, CLZERO, and PTE CoalescingYes Yes
GMET, WBNOINVD, CLWB, QOS, PQE-BW, RDPID, RDPRU, and MCOMMITYes Yes
MPK, VAESYes
SGX
FPUs per core10.5110.51
Pipes per FPU22
FPU pipe width128-bit256-bit80-bit128-bit256-bit
CPU instruction set SIMD levelSSE4a[lower-alpha 6]AVX AVX2AVX-512SSSE3AVXAVX2
3DNow!3DNow!+
PREFETCH/PREFETCHWYes Yes
GFNIYes
AMX
FMA4, LWP, TBM, and XOPYes Yes
FMA3Yes Yes
AMD XDNAYes
L1 data cache per core (KiB)64163232
L1 data cache associativity (ways)2488
L1 instruction caches per core10.51 10.51
Max APU total L1 instruction cache (KiB)256128192256512256 64128 96 128
L1 instruction cache associativity (ways)2348 2 3 4 8
L2 caches per core10.5110.51
Max APU total L2 cache (MiB)424161212
L2 cache associativity (ways)168168
Max on--die L3 cache per CCX (MiB)416324
Max 3D V-Cache per CCD (MiB)64
Max total in-CCD L3 cache per APU (MiB)4816644
Max. total 3D V-Cache per APU (MiB)64
Max. board L3 cache per APU (MiB)
Max total L3 cache per APU (MiB)48161284
APU L3 cache associativity (ways)1616
L3 cache schemeVictimVictim
Max. L4 cache
Max stock DRAM supportDDR3-1866DDR3-2133DDR3-2133, DDR4-2400DDR4-2400DDR4-2933DDR4-3200, LPDDR4-4266DDR5-4800, LPDDR5-6400DDR5-5200DDR5-5600, LPDDR5x-7500DDR3L-1333DDR3L-1600DDR3L-1866DDR3-1866, DDR4-2400DDR4-2400DDR4-1600DDR4-3200LPDDR5-5500
Max DRAM channels per APU21212
Max stock DRAM bandwidth (GB/s) per APU29.86634.13238.40046.93268.256102.40083.200120.000 10.66612.80014.93319.20038.40012.80051.20088.000
GPU microarchitectureTeraScale 2 (VLIW5)TeraScale 3 (VLIW4)GCN 2nd genGCN 3rd genGCN 5th gen[9]RDNA 2RDNA 3TeraScale 2 (VLIW5)GCN 2nd genGCN 3rd gen[9]GCN 5th genRDNA 2
GPU instruction setTeraScale instruction setGCN instruction setRDNA instruction setTeraScale instruction setGCN instruction setRDNA instruction set
Max stock GPU base clock (MHz)60080084486611081250140021002400400 538600?847900120060013001900
Max stock GPU base GFLOPS[lower-alpha 7]480614.4648.1886.71134.517601971.22150.43686.4102.4 86???345.6460.8230.41331.2486.4
3D engine[lower-alpha 8]Up to 400:20:8Up to 384:24:6Up to 512:32:8Up to 704:44:16[10]Up to 512:32:8768:48:8128:8:480:8:4128:8:4Up to 192:12:8Up to 192:12:4192:12:4Up to 512:?:?128:?:?
IOMMUv1IOMMUv2IOMMUv1?IOMMUv2
Video decoderUVD 3.0UVD 4.2UVD 6.0VCN 1.0[11]VCN 2.1[12] VCN 2.2[12]VCN 3.1?UVD 3.0UVD 4.0UVD 4.2UVD 6.0UVD 6.3VCN 1.0VCN 3.1
Video encoderVCE 1.0VCE 2.0VCE 3.1VCE 2.0VCE 3.1
AMD Fluid Motion No Yes No No Yes No
GPU power savingPowerPlayPowerTunePowerPlayPowerTune[13]
TrueAudioYes[14]? Yes
FreeSync1
2
1
2
HDCP[lower-alpha 9]?1.42.22.3?1.42.22.3
PlayReady[lower-alpha 9]3.0 not yet3.0 not yet
Supported displays[lower-alpha 10]2–32–433 (desktop)
4 (mobile, embedded)
42344
/drm/radeon[lower-alpha 11][16][17]Yes Yes
/drm/amdgpu[lower-alpha 11][18]Yes[19] Yes[19]
  1. For FM2+ Excavator models: A8-7680, A6-7480 & Athlon X4 845.
  2. A PC would be one node.
  3. An APU combines a CPU and a GPU. Both have cores.
  4. Requires firmware support.
  5. Requires firmware support.
  6. No SSE4. No SSSE3.
  7. Single-precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.
  8. Unified shaders : texture mapping units : render output units
  9. To play protected video content, it also requires card, operating system, driver, and application support. A compatible HDCP display is also needed for this. HDCP is mandatory for the output of certain audio formats, placing additional constraints on the multimedia setup.
  10. To feed more than two displays, the additional panels must have native DisplayPort support.[15] Alternatively active DisplayPort-to-DVI/HDMI/VGA adapters can be employed.
  11. DRM (Direct Rendering Manager) is a component of the Linux kernel. Support in this table refers to the most current version.

Feature overview for AMD graphics cards

The following table shows features of AMD/ATI's GPUs (see also: List of AMD graphics processing units).

Name of GPU series Wonder Mach 3D Rage Rage Pro Rage 128 R100 R200 R300 R400 R500 R600 RV670 R700 Evergreen Northern
Islands
Southern
Islands
Sea
Islands
Volcanic
Islands
Arctic
Islands
/Polaris
Vega Navi 1x Navi 2x Navi 3x
Released 1986 1991 Apr
1996
Mar
1997
Aug
1998
Apr
2000
Aug
2001
Sep
2002
May
2004
Oct
2005
May
2007
Nov
2007
Jun
2008
Sep
2009
Oct
2010
Jan
2012
Sep
2013
Jun
2015
Jun 2016, Apr 2017, Aug 2019 Jun 2017, Feb 2019 Jul
2019
Nov
2020
Dec
2022
Marketing Name Wonder Mach 3D
Rage
Rage
Pro
Rage
128
Radeon
7000
Radeon
8000
Radeon
9000
Radeon
X700/X800
Radeon
X1000
Radeon
HD 2000
Radeon
HD 3000
Radeon
HD 4000
Radeon
HD 5000
Radeon
HD 6000
Radeon
HD 7000
Radeon
200
Radeon
300
Radeon
400/500/600
Radeon
RX Vega, Radeon VII
Radeon
RX 5000
Radeon
RX 6000
Radeon
RX 7000
AMD support Ended Current
Kind 2D 3D
Instruction set architecture Not publicly known TeraScale instruction set GCN instruction set RDNA instruction set
Microarchitecture TeraScale 1
(VLIW)
TeraScale 2
(VLIW5)
TeraScale 2
(VLIW5)

up to 68xx
TeraScale 3
(VLIW4)

in 69xx [20][21]
GCN 1st
gen
GCN 2nd
gen
GCN 3rd
gen
GCN 4th
gen
GCN 5th
gen
RDNA RDNA 2 RDNA 3
Type Fixed pipeline[lower-alpha 1] Programmable pixel & vertex pipelines Unified shader model
Direct3D 5.0 6.0 7.0 8.1 9.0
11 (9_2)
9.0b
11 (9_2)
9.0c
11 (9_3)
10.0
11 (10_0)
10.1
11 (10_1)
11 (11_0) 11 (11_1)
12 (11_1)
11 (12_0)
12 (12_0)
11 (12_1)
12 (12_1)
11 (12_1)
12 (12_2)
Shader model 1.4 2.0+ 2.0b 3.0 4.0 4.1 5.0 5.1 5.1
6.5
6.7
OpenGL 1.1 1.2 1.3 2.1[lower-alpha 2][22] 3.3 4.5 (on Linux: 4.5 (Mesa 3D 21.0))[23][24][25][lower-alpha 3] 4.6 (on Linux: 4.6 (Mesa 3D 20.0))
Vulkan 1.0
(Win 7+ or Mesa 17+)
1.2 (Adrenalin 20.1.2, Linux Mesa 3D 20.0)
1.3 (GCN 4 and above (with Adrenalin 22.1.2, Mesa 22.0))
1.3
OpenCL Close to Metal 1.1 (no Mesa 3D support) 1.2+ (on Linux: 1.1+ (no Image support on clover, with by rustiCL) with Mesa 3D, 1.2+ on GCN 1.Gen) 2.0+ (Adrenalin driver on Win7+)
(on Linux ROCM, Linux Mesa 3D 1.2+ (no Image support in clover, but in rustiCL with Mesa 3D, 2.0+ and 3.0 with AMD drivers or AMD ROCm), 5th gen: 2.2 win 10+ and Linux RocM 5.0+
2.2+ and 3.0 windows 8.1+ and Linux ROCM 5.0+ (Mesa 3D rustiCL 1.2+ and 3.0 (2.1+ and 2.2+ wip)) [26] [27][28]
HSA / ROCm Yes ?
Video decoding ASIC Avivo/UVD UVD+ UVD 2 UVD 2.2 UVD 3 UVD 4 UVD 4.2 UVD 5.0 or 6.0 UVD 6.3 UVD 7 [29][lower-alpha 4] VCN 2.0 [29][lower-alpha 4] VCN 3.0 [30] VCN 4.0
Video encoding ASIC VCE 1.0 VCE 2.0 VCE 3.0 or 3.1 VCE 3.4 VCE 4.0 [29][lower-alpha 4]
Fluid Motion [lower-alpha 5] No Yes No ?
Power saving ? PowerPlay PowerTune PowerTune & ZeroCore Power ?
TrueAudio Via dedicated DSP Via shaders
FreeSync 1
2
HDCP[lower-alpha 6] ? 1.4 2.2 2.3 [31]
PlayReady[lower-alpha 6] 3.0 No 3.0
Supported displays[lower-alpha 7] 1–2 2 2–6 ?
Max. resolution ? 2–6 ×
2560×1600
2–6 ×
4096×2160 @ 30 Hz
2–6 ×
5120×2880 @ 60 Hz
3 ×
7680×4320 @ 60 Hz [32]

7680×4320 @ 60 Hz PowerColor
7680x4320

@165 HZ

/drm/radeon[lower-alpha 8] Yes
/drm/amdgpu[lower-alpha 8] Experimental [33] Yes
  1. The Radeon 100 Series has programmable pixel shaders, but do not fully comply with DirectX 8 or Pixel Shader 1.0. See article on R100's pixel shaders.
  2. R300, R400 and R500 based cards do not fully comply with OpenGL 2+ as the hardware does not support all types of non-power of two (NPOT) textures.
  3. OpenGL 4+ compliance requires supporting FP64 shaders and these are emulated on some TeraScale chips using 32-bit hardware.
  4. The UVD and VCE were replaced by the Video Core Next (VCN) ASIC in the Raven Ridge APU implementation of Vega.
  5. Video processing for video frame rate interpolation technique. In Windows it works as a DirectShow filter in your player. In Linux, there is no support on the part of drivers and / or community.
  6. To play protected video content, it also requires card, operating system, driver, and application support. A compatible HDCP display is also needed for this. HDCP is mandatory for the output of certain audio formats, placing additional constraints on the multimedia setup.
  7. More displays may be supported with native DisplayPort connections, or splitting the maximum resolution between multiple monitors with active converters.
  8. DRM (Direct Rendering Manager) is a component of the Linux kernel. AMDgpu is the Linux kernel module. Support in this table refers to the most current version.

See also

References

  1. "AMD PowerTune vs PowerPlay" (PDF). AMD. December 1, 2010.
  2. Marco Chiappetta (September 10, 2009). "ATI Radeon HD 4670, Redefining The Mainstream". Retrieved December 10, 2018.
  3. "AMD PowerPlay™ Technology". Archived from the original on January 30, 2014. Retrieved August 23, 2017.
  4. "Add amdgpu powerplay support". November 11, 2015.
  5. PC Watch image. Retrieved December 3, 2007. Notice the core speed in current clock settings section in gray.
  6. "AMD Announces the 7th Generation APU: Excavator mk2 in Bristol Ridge and Stoney Ridge for Notebooks". May 31, 2016. Retrieved January 3, 2020.
  7. "AMD Mobile "Carrizo" Family of APUs Designed to Deliver Significant Leap in Performance, Energy Efficiency in 2015" (Press release). November 20, 2014. Retrieved February 16, 2015.
  8. "The Mobile CPU Comparison Guide Rev. 13.0 Page 5 : AMD Mobile CPU Full List". TechARP.com. Retrieved December 13, 2017.
  9. "AMD VEGA10 and VEGA11 GPUs spotted in OpenCL driver". VideoCardz.com. Retrieved June 6, 2017.
  10. Cutress, Ian (February 1, 2018). "Zen Cores and Vega: Ryzen APUs for AM4 – AMD Tech Day at CES: 2018 Roadmap Revealed, with Ryzen APUs, Zen+ on 12nm, Vega on 7nm". Anandtech. Retrieved February 7, 2018.
  11. Larabel, Michael (November 17, 2017). "Radeon VCN Encode Support Lands in Mesa 17.4 Git". Phoronix. Retrieved November 20, 2017.
  12. "AMD Ryzen 5000G 'Cezanne' APU Gets First High-Res Die Shots, 10.7 Billion Transistors In A 180mm2 Package". wccftech. August 12, 2021. Retrieved August 25, 2021.
  13. Tony Chen; Jason Greaves, "AMD's Graphics Core Next (GCN) Architecture" (PDF), AMD, retrieved August 13, 2016
  14. "A technical look at AMD's Kaveri architecture". Semi Accurate. Retrieved July 6, 2014.
  15. "How do I connect three or More Monitors to an AMD Radeon™ HD 5000, HD 6000, and HD 7000 Series Graphics Card?". AMD. Retrieved December 8, 2014.
  16. Airlie, David (November 26, 2009). "DisplayPort supported by KMS driver mainlined into Linux kernel 2.6.33". Retrieved January 16, 2016.
  17. "Radeon feature matrix". freedesktop.org. Retrieved January 10, 2016.
  18. Deucher, Alexander (September 16, 2015). "XDC2015: AMDGPU" (PDF). Retrieved January 16, 2016.
  19. Michel Dänzer (November 17, 2016). "[ANNOUNCE] xf86-video-amdgpu 1.2.0". lists.x.org.
  20. "AMD Radeon HD 6900 (AMD Cayman) series graphics cards". HWlab. hw-lab.com. December 19, 2010. Archived from the original on August 23, 2022. Retrieved August 23, 2022. New VLIW4 architecture of stream processors allowed to save area of each SIMD by 10%, while performing the same compared to previous VLIW5 architecture
  21. "GPU Specs Database". TechPowerUp. Retrieved August 23, 2022.
  22. "NPOT Texture (OpenGL Wiki)". Khronos Group. Retrieved February 10, 2021.
  23. "AMD Radeon Software Crimson Edition Beta". AMD. Retrieved April 20, 2018.
  24. "Mesamatrix". mesamatrix.net. Retrieved April 22, 2018.
  25. "RadeonFeature". X.Org Foundation. Retrieved April 20, 2018.
  26. "AMD Radeon RX 6800 XT Specs". TechPowerUp. Retrieved January 1, 2021.
  27. "AMD Launches The Radeon PRO W7500/W7600 RDNA3 GPUs". Phoronix. August 3, 2023. Retrieved September 4, 2023.
  28. "AMD Radeon Pro 5600M Grafikkarte". TopCPU.net (in German). Retrieved September 4, 2023.
  29. Killian, Zak (March 22, 2017). "AMD publishes patches for Vega support on Linux". Tech Report. Retrieved March 23, 2017.
  30. Larabel, Michael (September 15, 2020). "AMD Radeon Navi 2 / VCN 3.0 Supports AV1 Video Decoding". Phoronix. Retrieved January 1, 2021.
  31. Edmonds, Rich (February 4, 2022). "ASUS Dual RX 6600 GPU review: Rock-solid 1080p gaming with impressive thermals". Windows Central. Retrieved November 1, 2022.
  32. "Radeon's next-generation Vega architecture" (PDF). Radeon Technologies Group (AMD). Archived from the original (PDF) on September 6, 2018. Retrieved June 13, 2017.
  33. Larabel, Michael (December 7, 2016). "The Best Features of the Linux 4.9 Kernel". Phoronix. Retrieved December 7, 2016.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.