Alpha nuclide

An alpha nuclide is a nuclide that consists of an integer number of alpha particles. Alpha nuclides have equal, even numbers of protons and neutrons; they are important in stellar nucleosynthesis since the energetic environment within stars is amenable to fusion of alpha particles into heavier nuclei.[1][2] Stable alpha nuclides, and stable decay products of radioactive alpha nuclides, are some of the most common metals in the universe.

Alpha nuclide is also shorthand for alpha radionuclide, referring to those radioactive isotopes that undergo alpha decay and thereby emit alpha particles.[3]

List of alpha nuclides

Alpha number nuclide Stable/radioactive decay mode half-life[4] product(s) of decay (bold is stable) alpha decay energy notes
1 4
2
He
Stable
2 8
4
Be
Radioactive α 8.19(37)×10−17 s 4
2
He
0.0918MeV
3 12
6
C
Stable -7.367MeV
4 16
8
O
Stable -7.16MeV
5 20
10
Ne
Stable -4.73MeV
6 24
12
Mg
Stable -9.32MeV
7 28
14
Si
Stable -9.98MeV
8 32
16
S
Stable -6.95MeV
9 36
18
Ar
Observationally Stable -6.64MeV
10 40
20
Ca
Observationally Stable -7.04MeV
11 44
22
Ti
Radioactive EC 60.0(11) y 44
21
Sc
  44
20
Ca
-5.13MeV
12 48
24
Cr
Radioactive β+ 21.56(3) h 48
23
V
  48
22
Ti
-7.70MeV
13 52
26
Fe
Radioactive β+ 8.275(8) h 52m
25
Mn
  52
24
Cr
-7.94MeV
14 56
28
Ni
Radioactive β+ 6.075(10) d 56
27
Co
  56
26
Fe
-8.00MeV
15 60
30
Zn
Radioactive β+ 2.38(5) min 60
29
Cu
  60
28
Ni
16 64
32
Ge
Radioactive β+ 63.7(25) s 64
31
Ga
  64
30
Zn
17 68
34
Se
Radioactive β+ 35.5(7) s 68
33
As
18 72
36
Kr
Radioactive β+ 17.16(18) s 72
35
Br
19 76
38
Sr
Radioactive β+ 7.89(7) s 76
37
Rb
20 80
40
Zr
Radioactive β+ 4.6(6) s 80
39
Y
21 84
42
Mo
Radioactive β+ 3.8(9) ms 84
41
Nb
22 88
44
Ru
Radioactive β+ 1.3(3) s 88
43
Tc
23 92
46
Pd
Radioactive β+ 1.1(3) s 92
45
Rh
24 96
48
Cd
Radioactive β+ ~1 s 96
47
Ag
25 100
50
Sn
Radioactive β+ 1.1(4) s 100
49
In
26 104
52
Te
Radioactive α <18 ns 100
50
Sn
27 108
54
Xe
Radioactive α 58+106
−23
 μs
104
52
Te

The nuclear binding energy of alpha nuclides heavier than zinc-60 (beginning with germanium-64) is too large for them be formed by fusion processes (see alpha process). As of 2018, the heaviest known alpha nuclide is xenon-108.[5]

References

  1. Appenzeller; Harwit; Kippenhahn; Strittmatter; Trimble, eds. (1998). Astrophysics Library (3rd ed.). New York: Springer.
  2. Carroll, Bradley W. & Ostlie, Dale A. (2007). An Introduction to Modern Stellar Astrophysics. Addison Wesley, San Francisco. ISBN 978-0-8053-0348-3.
  3. John Avison (November 2014). The World of Physics. Nelson Thornes. pp. 397–. ISBN 978-0-17-438733-6.
  4. Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  5. Auranen, K.; et al. (2018). "Superallowed α decay to doubly magic 100Sn" (PDF). Physical Review Letters. 121 (18): 182501. doi:10.1103/PhysRevLett.121.182501. PMID 30444390.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.