Common year starting on Thursday

A common year starting on Thursday is any non-leap year (i.e. a year with 365 days) that begins on Thursday, 1 January, and ends on Thursday, 31 December. Its dominical letter hence is D. The most recent year of such kind was 2015 and the next one will be 2026 in the Gregorian calendar[1] or, likewise, 2021 and 2027 in the obsolete Julian calendar, see below for more.

This is the only common year with three occurrences of Friday the 13th: those three in this common year occur in February, March, and November. Leap years starting on Sunday share this characteristic, for the months January, April and July. From February until March in this type of year is also the shortest period (one month) that runs between two instances of Friday the 13th.

Calendars

Calendar for any common year starting on Thursday,
presented as common in many English-speaking areas
January
Su Mo Tu We Th Fr Sa
010203
04050607080910
11121314151617
18192021222324
25262728293031
 
February
Su Mo Tu We Th Fr Sa
01020304050607
08091011121314
15161718192021
22232425262728
 
 
March
Su Mo Tu We Th Fr Sa
01020304050607
08091011121314
15161718192021
22232425262728
293031  
 
April
Su Mo Tu We Th Fr Sa
01020304
05060708091011
12131415161718
19202122232425
2627282930  
 
May
Su Mo Tu We Th Fr Sa
0102
03040506070809
10111213141516
17181920212223
24252627282930
31  
June
Su Mo Tu We Th Fr Sa
010203040506
07080910111213
14151617181920
21222324252627
282930  
 
July
Su Mo Tu We Th Fr Sa
01020304
05060708091011
12131415161718
19202122232425
262728293031  
 
August
Su Mo Tu We Th Fr Sa
01
02030405060708
09101112131415
16171819202122
23242526272829
3031  
September
Su Mo Tu We Th Fr Sa
0102030405
06070809101112
13141516171819
20212223242526
27282930  
 
October
Su Mo Tu We Th Fr Sa
010203
04050607080910
11121314151617
18192021222324
25262728293031
 
November
Su Mo Tu We Th Fr Sa
01020304050607
08091011121314
15161718192021
22232425262728
2930  
 
December
Su Mo Tu We Th Fr Sa
0102030405
06070809101112
13141516171819
20212223242526
2728293031  
 
ISO 8601-conformant calendar with week numbers for
any common year starting on Thursday (dominical letter D)
January
Wk Mo Tu We Th Fr Sa Su
01 01020304
02 05060708091011
03 12131415161718
04 19202122232425
05 262728293031  
   
February
Wk Mo Tu We Th Fr Sa Su
05 01
06 02030405060708
07 09101112131415
08 16171819202122
09 232425262728
   
March
Wk Mo Tu We Th Fr Sa Su
09 01
10 02030405060708
11 09101112131415
12 16171819202122
13 23242526272829
14 3031  
April
Wk Mo Tu We Th Fr Sa Su
14 0102030405
15 06070809101112
16 13141516171819
17 20212223242526
18 27282930  
   
May
Wk Mo Tu We Th Fr Sa Su
18 010203
19 04050607080910
20 11121314151617
21 18192021222324
22 25262728293031
   
June
Wk Mo Tu We Th Fr Sa Su
23 01020304050607
24 08091011121314
25 15161718192021
26 22232425262728
27 2930  
   
July
Wk Mo Tu We Th Fr Sa Su
27 0102030405
28 06070809101112
29 13141516171819
30 20212223242526
31 2728293031  
   
August
Wk Mo Tu We Th Fr Sa Su
31 0102
32 03040506070809
33 10111213141516
34 17181920212223
35 24252627282930
36 31  
September
Wk Mo Tu We Th Fr Sa Su
36 010203040506
37 07080910111213
38 14151617181920
39 21222324252627
40 282930  
   
October
Wk Mo Tu We Th Fr Sa Su
40 01020304
41 05060708091011
42 12131415161718
43 19202122232425
44 262728293031  
   
November
Wk Mo Tu We Th Fr Sa Su
44 01
45 02030405060708
46 09101112131415
47 16171819202122
48 23242526272829
49 30  
December
Wk Mo Tu We Th Fr Sa Su
49 010203040506
50 07080910111213
51 14151617181920
52 21222324252627
53 28293031  
   

Applicable years

Gregorian Calendar

In the (currently used) Gregorian calendar, alongside Tuesday, the fourteen types of year (seven common, seven leap) repeat in a 400-year cycle (20871 weeks). Forty-four common years per cycle or exactly 11% start on a Thursday. The 28-year sub-cycle only spans across century years divisible by 400, e.g. 1600, 2000, and 2400.

Gregorian common years starting on Thursday[1]
Decade 1st2nd3rd4th5th6th7th8th9th10th
16th century prior to first adoption (proleptic)15871598
17th century 16091615162616371643165416651671168216931699
18th century 17051711172217331739175017611767177817891795
19th century 18011807181818291835184618571863187418851891
20th century 19031914192519311942195319591970198119871998
21st century 20092015202620372043205420652071208220932099
22nd century 21052111212221332139215021612167217821892195
23rd century 22012207221822292235224622572263227422852291
24th century 23032314232523312342235323592370238123872398
25th century 24092415242624372443245424652471248224932499
400-year cycle
0–99 915263743546571829399
100–199 105111122133139150161167178189195
200–299 201207218229235246257263274285291
300–399 303314325331342353359370381387398

Julian Calendar

In the now-obsolete Julian calendar, the fourteen types of year (seven common, seven leap) repeat in a 28-year cycle (1461 weeks). A leap year has two adjoining dominical letters (one for January and February and the other for March to December, as 29 February has no letter). This sequence occurs exactly once within a cycle, and every common letter thrice.

As the Julian calendar repeats after 28 years that means it will also repeat after 700 years, i.e. 25 cycles. The year's position in the cycle is given by the formula ((year + 8) mod 28) + 1). Years 3, 14 and 20 of the cycle are common years beginning on Thursday. 2017 is year 10 of the cycle. Approximately 10.71% of all years are common years beginning on Thursday.

Julian common years starting on Thursday
Decade 1st2nd3rd4th5th6th7th8th9th10th
15th century 14051411142214331439145014611467147814891495
16th century 1506151715231534154515511562157315791590
17th century 16011607161816291635164616571683167416851691
18th century 17021713171917301741174717581769177517861797
19th century 18031814182518311842185318591870188118871898
20th century 19091915192619371943195419651971198219931999
21st century 2010202120272038204920552066207720832094

Holidays

International

Roman Catholic Solemnities

Australia and New Zealand

British Isles

Canada

United States

References

  1. Robert van Gent (2017). "The Mathematics of the ISO 8601 Calendar". Utrecht University, Department of Mathematics. Retrieved 20 July 2017.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.