Dilithium
Dilithium, Li2, is a strongly electrophilic, diatomic molecule comprising two lithium atoms covalently bonded together. Li2 is known in the gas phase. It has a bond order of 1, an internuclear separation of 267.3 pm and a bond energy of 102 kJ/mol or 1.06 eV in each bond.[1] The electron configuration of Li2 may be written as σ2.
Names | |
---|---|
IUPAC name
Dilithium(Li—Li) | |
Identifiers | |
3D model (JSmol) |
|
ChemSpider | |
PubChem CID |
|
CompTox Dashboard (EPA) |
|
| |
| |
Properties | |
Li2 | |
Molar mass | 13.88 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references |
It has been observed that 1% (by mass) of lithium in the vapor phase is in the form of dilithium.
Being the lightest stable neutral homonuclear diatomic molecule after H2, and the helium dimer, dilithium is an extremely important model system for studying fundamentals of physics, chemistry, and electronic structure theory. It is the most thoroughly characterized compound in terms of the accuracy and completeness of the empirical potential energy curves of its electronic states. Analytic empirical potential energy curves have been constructed for the X-state,[2] a-state,[3] A-state,[4] c-state,[5] B-state,[6] 2d-state,[7] l-state,[7] E-state,[8] and the F-state[9] . The most reliable of these potential energy curves are of the Morse/Long-range variety (see entries in the table below).[2][3][6][4][5]
Li2 potentials are often used to extract atomic properties. For example, the C3 value for atomic lithium extracted from the A-state potential of Li2 by Le Roy et al. in [2] is more precise than any previously measured atomic oscillator strength.[10] This lithium oscillator strength is related to the radiative lifetime of atomic lithium and is used as a benchmark for atomic clocks and measurements of fundamental constants.
Electronic state | Spectroscopic symbol | Term symbol | Bond length (pm) | Dissociation energy (cm−1) | Bound vibrational levels | References | ||
---|---|---|---|---|---|---|---|---|
1 (Ground) | X | 11Σg+ | 267 |
.298 74(19)[2] | 8 516 |
.780 0(23)[2] | 39[2] | [2] |
2 | a | 13Σu+ | 417 |
.000 6(32)[3] | 333 |
.779 5(62)[3] | 11[3] | [3] |
3 | b | 13Πu | [7] | |||||
4 | A | 11Σg+ | 310 |
.792 88(36)[2] | 9 353 |
.179 5 (28)[2] | 118[2] | [2] |
5 | c | 13Σg+ | 306 |
.543 6(16)[3] | 7 093 |
.492 6(86)[3] | 104[3] | |
6 | B | 11Πu | 293 |
.617 142(310)[6] | 2 984 |
.444[6] | 118[6] | |
7 | E | 3(?)1Σg+ | [8] |
See also
References
- Chemical Bonding, Mark J. Winter, Oxford University Press, 1994, ISBN 0-19-855694-2
- Le Roy, Robert J.; N. S. Dattani; J. A. Coxon; A. J. Ross; Patrick Crozet; C. Linton (25 November 2009). "Accurate analytic potentials for Li2(X) and Li2(A) from 2 to 90 Angstroms, and the radiative lifetime of Li(2p)". Journal of Chemical Physics. 131 (20): 204309. Bibcode:2009JChPh.131t4309L. doi:10.1063/1.3264688. PMID 19947682.
- Dattani, N. S.; R. J. Le Roy (8 May 2013). "A DPF data analysis yields accurate analytic potentials for Li2(a)and Li2(c) that incorporate 3-state mixing near the c-state asymptote". Journal of Molecular Spectroscopy. 268 (1–2): 199–210. arXiv:1101.1361. Bibcode:2011JMoSp.268..199.. doi:10.1016/j.jms.2011.03.030. S2CID 119266866.
- W. Gunton, M. Semczuk, N. S. Dattani, K. W. Madison, High resolution photoassociation spectroscopy of the 6Li2 A-state, https://arxiv.org/abs/1309.5870
- Semczuk, M.; Li, X.; Gunton, W.; Haw, M.; Dattani, N. S.; Witz, J.; Mills, A. K.; Jones, D. J.; Madison, K. W. (2013). "High-resolution photoassociation spectroscopy of the 6Li2 c-state". Phys. Rev. A. 87 (5): 052505. arXiv:1309.6662. Bibcode:2013PhRvA..87e2505S. doi:10.1103/PhysRevA.87.052505. S2CID 119263860.
- Huang, Yiye; R. J. Le Roy (8 October 2003). "Potential energy Lambda double and Born-Oppenheimer breakdown functions for the B1Piu "barrier" state of Li2". Journal of Chemical Physics. 119 (14): 7398–7416. Bibcode:2003JChPh.119.7398H. doi:10.1063/1.1607313.
- Li, Dan; F. Xie; L. Li; A. Lazoudis; A. M. Lyyra (29 September 2007). "New observation of the, 13Δg, and 23Πg states and molecular constants with all 6Li2, 7Li2, and 6Li7Li data". Journal of Molecular Spectroscopy. 246 (2): 180–186. Bibcode:2007JMoSp.246..180L. doi:10.1016/j.jms.2007.09.008.
- Jastrzebski, W; A. Pashov; P. Kowalczyk (22 June 2001). "The E-state of lithium dimer revised". Journal of Chemical Physics. 114 (24): 10725–10727. Bibcode:2001JChPh.11410725J. doi:10.1063/1.1374927.
- Pashov, A; W. Jastzebski; P. Kowalczyk (22 October 2000). "The Li2 F "shelf" state: Accurate potential energy curve based on the inverted perturbation approach". Journal of Chemical Physics. 113 (16): 6624–6628. Bibcode:2000JChPh.113.6624P. doi:10.1063/1.1311297.
- Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Mitroy, J. (2011). "Third-order perturbation theory for van der Waals interaction coefficients" (PDF). Physical Review A. 84 (5): 052502. Bibcode:2011PhRvA..84e2502T. doi:10.1103/PhysRevA.84.052502. ISSN 1050-2947. S2CID 122544942. Archived from the original (PDF) on 2020-06-25.
Further reading
- Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.