Instructions per second

Instructions per second (IPS) is a measure of a computer's processor speed. For complex instruction set computers (CISCs), different instructions take different amounts of time, so the value measured depends on the instruction mix; even for comparing processors in the same family the IPS measurement can be problematic. Many reported IPS values have represented "peak" execution rates on artificial instruction sequences with few branches and no cache contention, whereas realistic workloads typically lead to significantly lower IPS values. Memory hierarchy also greatly affects processor performance, an issue barely considered in IPS calculations. Because of these problems, synthetic benchmarks such as Dhrystone are now generally used to estimate computer performance in commonly used applications, and raw IPS has fallen into disuse.

Computer processing efficiency, measured as the number of watts needed per million instructions per second (Watts per MIPS).

The term is commonly used in association with a metric prefix (k, M, G, T, P, or E) to form kilo instructions per second (kIPS), mega instructions per second (MIPS), giga instructions per second (GIPS) and so on. Formerly TIPS was used occasionally for "thousand IPS".

Computing

IPS can be calculated using this equation:[1]

However, the instructions/cycle measurement depends on the instruction sequence, the data and external factors.

Thousand instructions per second (TIPS/kIPS)

Before standard benchmarks were available, average speed rating of computers was based on calculations for a mix of instructions with the results given in kilo Instructions Per Second (kIPS). The most famous was the Gibson Mix,[2] produced by Jack Clark Gibson of IBM for scientific applications in 1959. Other ratings, such as the ADP mix which does not include floating point operations, were produced for commercial applications. The thousand instructions per second (kIPS) unit is rarely used today, as most current microprocessors can execute at least a million instructions per second.

The Gibson Mix

Gibson divided computer instructions into 12 classes, based on the IBM 704 architecture, adding a 13th class to account for indexing time. Weights were primarily based on analysis of seven scientific programs run on the 704, with a small contribution from some IBM 650 programs. The overall score was then the weighted sum of the average execution speed for instructions in each class.[3]

Millions of instructions per second (MIPS)

The speed of a given CPU depends on many factors, such as the type of instructions being executed, the execution order and the presence of branch instructions (problematic in CPU pipelines). CPU instruction rates are different from clock frequencies, usually reported in Hz, as each instruction may require several clock cycles to complete or the processor may be capable of executing multiple independent instructions simultaneously. MIPS can be useful when comparing performance between processors made with similar architecture (e.g. Microchip branded microcontrollers), but they are difficult to compare between differing CPU architectures.[4] This led to the term "Meaningless Indicator of Processor Speed,"[5] or less commonly, "Meaningless Indices of Performance," [6] being popular amongst technical people by the mid-1980s.

For this reason, MIPS has become not a measure of instruction execution speed, but task performance speed compared to a reference. In the late 1970s, minicomputer performance was compared using VAX MIPS, where computers were measured on a task and their performance rated against the VAX-11/780 that was marketed as a 1 MIPS machine. (The measure was also known as the VAX Unit of Performance or VUP.) This was chosen because the 11/780 was roughly equivalent in performance to an IBM System/370 model 158–3, which was commonly accepted in the computing industry as running at 1 MIPS.

Many minicomputer performance claims were based on the Fortran version of the Whetstone benchmark, giving Millions of Whetstone Instructions Per Second (MWIPS). The VAX 11/780 with FPA (1977) runs at 1.02 MWIPS.

Effective MIPS speeds are highly dependent on the programming language used. The Whetstone Report has a table showing MWIPS speeds of PCs via early interpreters and compilers up to modern languages. The first PC compiler was for BASIC (1982) when a 4.8 MHz 8088/87 CPU obtained 0.01 MWIPS. Results on a 2.4 GHz Intel Core 2 Duo (1 CPU 2007) vary from 9.7 MWIPS using BASIC Interpreter, 59 MWIPS via BASIC Compiler, 347 MWIPS using 1987 Fortran, 1,534 MWIPS through HTML/Java to 2,403 MWIPS using a modern C/C++ compiler.

For the most early 8-bit and 16-bit microprocessors, performance was measured in thousand instructions per second (1000 kIPS = 1 MIPS).

zMIPS refers to the MIPS measure used internally by IBM to rate its mainframe servers (zSeries, IBM System z9, and IBM System z10).

Weighted million operations per second (WMOPS) is a similar measurement, used for audio codecs.

Timeline of instructions per second

Processor / System Dhrystone MIPS or MIPS, and frequency D instructions per clock cycle D instructions per clock cycle per core Year Source
UNIVAC I0.002 MIPS at 2.25 MHz0.00080.00081951

[7]

IBM 7030 ("Stretch") 1.200 MIPS at 3.30 MHz 0.364 0.364 1961 [8][9]
CDC 6600 10.00 MIPS at 10.00 MHz 1 1 1965 [10][11]
Intel 40040.092 MIPS at 0.740 MHz
(Not Dhrystone)
0.1240.1241971[12]
IBM System/370 Model 1580.640 MIPS at 8.696 MHz0.07360.07361972[13]
Intel 80800.290 MIPS at 2.000 MHz
(Not Dhrystone)
0.1450.1451974[14]
Cray 1 160.0 MIPS at 80.00 MHz 2 2 1975 [15]
MOS Technology 65020.430 MIPS at 1.000 MHz0.430.431975[16]
Intel 8080A0.435 MIPS at 3.000 MHz
(Not Dhrystone)
0.1450.1451976[14]
Zilog Z800.580 MIPS at 4.000 MHz
(Not Dhrystone)
0.1450.1451976[16]
Motorola 68020.500 MIPS at 1.000 MHz0.50.51977[17]
IBM System/370 Model 158-30.730 MIPS at 8.696 MHz0.08390.08391977[13]
VAX-11/7801.000 MIPS at 5.000 MHz0.20.21977[13]
Motorola 68090.420 MIPS at 1.000 MHz0.420.421978[16]
Intel 80860.330 MIPS at 5.000 MHz0.0660.0661978[14]
Fujitsu MB88432.000 MIPS at 2.000 MHz
(Not Dhrystone)
111978[18]
Intel 80880.750 MIPS at 10.00 MHz0.0750.0751979[14]
Motorola 680001.400 MIPS at 8.000 MHz0.1750.1751979[16]
Zilog Z8001/Z80021.5 MIPS at 6 MHz0.250.251979[19]
Intel 8035/8039/80486 MIPS at 6 MHz
(Not Dhrystone)
111980[20]
Fujitsu MB8843/MB88446 MIPS at 6 MHz
(Not Dhrystone)
111980[18]
Zilog Z80/Z80H1.16 MIPS at 8 MHz
(Not Dhrystone)
0.1450.1451981[16][21]
Motorola 68021.79 MIPS at 3.58 MHz0.50.51981[17][22]
Zilog Z8001/Z8002B2.5 MIPS at 10 MHz0.250.251981[19]
MOS Technology 65022.522 MIPS at 5.865 MHz0.430.431981[16][22]
Intel 802861.28 MIPS at 12 MHz0.1070.1071982[13]
Motorola 680002.188 MIPS at 12.5 MHz0.1750.1751982[16]
Motorola 680102.407 MIPS at 12.5 MHz0.1930.1931982[23]
NEC V204 MIPS at 8 MHz
(Not Dhrystone)
0.50.51982[24]
LINKS-1 Computer Graphics System (257-processor)642.5 MIPS at 10 MHz2.50.251982[25]
Texas Instruments TMS320105 MIPS at 20 MHz0.250.251983[26]
NEC V305 MIPS at 10 MHz
(Not Dhrystone)
0.50.51983[24]
Motorola 680103.209 MIPS at 16.67 MHz0.1930.1931984[23]
Motorola 680204.848 MIPS at 16 MHz0.3030.3031984[27]
Hitachi HD637052 MIPS at 2 MHz111985[28][29]
Intel i386DX2.15 MIPS at 16 MHz0.1340.1341985[13]
Hitachi-Motorola 68HC0003.5 MIPS at 20 MHz0.1750.1751985[16]
Intel 87511 MIPS at 12 MHz0.0830.0831985[30]
Sega System 16 (4-processor)16.33 MIPS at 10 MHz4.0831.0201985[31]
ARM24 MIPS at 8 MHz0.50.51986[32]
Texas Instruments TMS340106 MIPS at 50 MHz0.120.121986[33]
NEC V706.6 MIPS at 20 MHz0.330.331987[34]
Motorola 680309 MIPS at 25 MHz0.360.361987[35][36]
Gmicro/20010 MIPS at 20 MHz0.50.51987[37]
Texas Instruments TMS320C2012.5 MIPS at 25 MHz0.50.51987[38]
Analog Devices ADSP-210012.5 MIPS at 12.5 MHz111987[39]
Texas Instruments TMS320C2525 MIPS at 50 MHz0.50.51987[38]
Motorola 6802010 MIPS at 33 MHz0.3030.3031988[27]
Motorola 6803018 MIPS at 50 MHz0.360.361988[36]
Namco System 21 (10-processor)73.927 MIPS at 25 MHz2.9570.2961988[40]
Intel i386DX4.3 MIPS at 33 MHz0.130.131989[13]
Intel i486DX8.7 MIPS at 25 MHz0.3480.3481989[13]
NEC V8016.5 MIPS at 33 MHz0.50.51989[34]
Intel i86025 MIPS at 25 MHz111989[41]
Atari Hard Drivin' (7-processor)33.573 MIPS at 50 MHz0.6710.09591989[42]
NEC SX-3 (4-processor)680 MIPS at 400 MHz1.70.4251989[43]
ARM312 MIPS at 25 MHz0.50.51989[44]
Motorola 6804044 MIPS at 40 MHz1.11.11990[45]
Namco System 21 (Galaxian³) (96-processor)1,660.386 MIPS at 40 MHz41.510.4321990[46]
AMD Am3869 MIPS at 40 MHz0.2250.2251991[47]
Intel i486DX11.1 MIPS at 33 MHz0.3360.3361991[13]
Intel i86050 MIPS at 50 MHz111991[41]
Intel i486DX225.6 MIPS at 66 MHz0.3880.3881992[13]
Alpha 21064 (EV4)86 MIPS at 150 MHz0.5730.5731992[13]
Alpha 21064 (EV4S/EV45)135 MIPS at 200 MHz0.6750.6751993[13][48]
MIPS R440085 MIPS at 150 MHz0.5670.5671993[49]
Gmicro/500132 MIPS at 66 MHz221993[50]
IBM-Motorola PowerPC 601157.7 MIPS at 80 MHz1.9711.9711993[51]
SGI Onyx RealityEngine2 (36-processor)2,640 MIPS at 150 MHz17.60.4891993[52]
Namco Magic Edge Hornet Simulator (36-processor)2,880 MIPS at 150 MHz19.20.5331993[49]
ARM740 MIPS at 45 MHz0.8890.8891994[53]
Intel DX470 MIPS at 100 MHz0.70.71994[14]
Motorola 68060110 MIPS at 75 MHz1.331.331994
Intel Pentium188 MIPS at 100 MHz1.881.881994[54]
Microchip PIC16F5 MIPS at 20 MHz0.250.251995[55]
IBM-Motorola PowerPC 603e188 MIPS at 133 MHz1.4141.4141995[56]
ARM 7500FE35.9 MIPS at 40 MHz0.90.91996
IBM-Motorola PowerPC 603ev423 MIPS at 300 MHz1.411.411996[56]
Intel Pentium Pro541 MIPS at 200 MHz2.72.71996[57]
Hitachi SH-4360 MIPS at 200 MHz1.81.81997[58][59]
IBM-Motorola PowerPC 750525 MIPS at 233 MHz2.32.31997
Zilog eZ8080 MIPS at 50 MHz1.61.61999[60]
Intel Pentium III2,054 MIPS at 600 MHz3.43.41999[54]
Sega Naomi Multiboard (32-processor)6,400 MIPS at 200 MHz3211999[61]
Freescale MPC8272760 MIPS at 400 MHz1.91.92000[62]
AMD Athlon3,561 MIPS at 1.2 GHz3.03.02000
Silicon Recognition ZISC 788,600 MIPS at 33 MHz260.6260.62000[63]
ARM11515 MIPS at 412 MHz1.251.252002[64]
AMD Athlon XP 2500+7,527 MIPS at 1.83 GHz4.14.12003[54]
Pentium 4 Extreme Edition9,726 MIPS at 3.2 GHz3.03.02003
Microchip PIC10F1 MIPS at 4 MHz0.250.252004[65][66]
ARM Cortex-M3125 MIPS at 100 MHz1.251.252004[67]
Nios II190 MIPS at 165 MHz1.131.132004[68]
MIPS32 4KEc356 MIPS at 233 MHz1.51.52004[69]
VIA C71,799 MIPS at 1.3 GHz1.41.42005[70]
ARM Cortex-A82,000 MIPS at 1.0 GHz2.02.02005[71]
AMD Athlon FX-5712,000 MIPS at 2.8 GHz4.34.32005
AMD Athlon 64 3800+ X2 (2-core)14,564 MIPS at 2.0 GHz7.33.62005[72]
PowerPC G4 MPC74483,910 MIPS at 1.7 GHz2.32.32005[73]
ARM Cortex-R4450 MIPS at 270 MHz1.661.662006[74]
MIPS32 24K604 MIPS at 400 MHz1.511.512006[75]
PS3 Cell BE (PPE only)10,240 MIPS at 3.2 GHz3.23.22006
IBM Xenon CPU (3-core)19,200 MIPS at 3.2 GHz6.02.02005
AMD Athlon FX-60 (2-core)18,938 MIPS at 2.6 GHz7.33.62006[72]
Intel Core 2 Extreme X6800 (2-core)27,079 MIPS at 2.93 GHz9.24.62006[72]
Intel Core 2 Extreme QX6700 (4-core)49,161 MIPS at 2.66 GHz18.44.62006[76]
MIPS64 20Kc1,370 MIPS at 600 MHz2.32.32007[77]
P.A. Semi PA6T-1682M8,800 MIPS at 1.8 GHz4.44.42007[78]
Qualcomm Scorpion (Cortex A8-like)2,100 MIPS at 1 GHz2.12.12008[64]
Intel Atom N2703,846 MIPS at 1.6 GHz2.42.42008[79]
Intel Core 2 Extreme QX9770 (4-core)59,455 MIPS at 3.2 GHz18.64.62008[76]
Intel Core i7 920 (4-core)82,300 MIPS at 2.93 GHz28.0897.0222008[80]
ARM Cortex-M045 MIPS at 50 MHz0.90.92009[81]
ARM Cortex-A9 (2-core)7,500 MIPS at 1.5 GHz5.02.52009[82]
AMD Phenom II X4 940 Black Edition42,820 MIPS at 3.0 GHz14.33.52009[83]
AMD Phenom II X6 1100T78,440 MIPS at 3.3 GHz23.73.92010[80]
Intel Core i7 Extreme Edition 980X (6-core)147,600 MIPS at 3.33 GHz44.77.462010[84]
ARM Cortex A51,256 MIPS at 800 MHz1.571.572011[71]
ARM Cortex A72,850 MIPS at 1.5 GHz1.91.92011[64]
Qualcomm Krait (Cortex A15-like, 2-core)9,900 MIPS at 1.5 GHz6.63.32011[64]
AMD E-350 (2-core)10,000 MIPS at 1.6 GHz6.253.1252011[85]
Nvidia Tegra 3 (Quad core Cortex-A9)13,800 MIPS at 1.5 GHz9.22.52011
Samsung Exynos 5250 (Cortex-A15-like 2-core)14,000 MIPS at 2.0 GHz7.03.52011[86]
Intel Core i5-2500K (4-core)83,000 MIPS at 3.3 GHz25.1526.2882011[87]
Intel Core i7 875K92,100 MIPS at 2.93 GHz31.47.852011[80]
AMD FX-8150 (8-core)90,749 MIPS at 3.6 GHz25.23.152011[88]
Intel Core i7 2600K (4-core)117,160 MIPS at 3.4 GHz34.458.612011[89]
Intel Core i7-3960X (6-core)176,170 MIPS at 3.3 GHz53.388.892011[90]
AMD FX-8350 (8-core)97,125 MIPS at 4.2 GHz23.12.92012[88][91]
AMD FX-9590 (8-core)115,625 MIPS at 5.0 GHz23.12.92012[80]
Intel Core i7 3770K (4-core)106,924 MIPS at 3.9 GHz27.46.92012[88]
Intel Core i7 4770K (4-core)133,740 MIPS at 3.9 GHz34.298.572013[88][91][92]
Intel Core i7 5960X (8-core)298,190 MIPS at 3.5 GHz85.210.652014[93]
Raspberry Pi 2 (quad-core ARM Cortex A7)4,744 MIPS at 1.0 GHz4.7441.1862014[94]
Intel Core i7 6950X (10-core)320,440 MIPS at 3.5 GHz91.559.162016[95]
ARM Cortex A73 (4-core) 71,120 MIPS at 2.8 GHz 25.4 6.35 2016
ARM Cortex A75 ? ? 8.2-9.5 2017 [96]
ARM Cortex A76 ? ? 10.7-12.4 2018 [96]
ARM Cortex A53 2,300 MIPS at 1 GHz 2.3 2.3 2012 [97]
ARM Cortex A35 2,100 MIPS at 1 GHz 2.1 2.1 2015 [97]
ARM Cortex A72 15,750 to 18,375 at 2.5 GHz 6.3 to 7.35 6.3 to 7.35 2015 [97]
ARM Cortex A57 10,250 to 11,750 at 2.5 GHz 4.1 to 4.7 4.1 to 4.7 2012 [97]
Sitara AM64x ARM Cortex A53 (2-core) 5,992 MIPS at 1 GHz 6 3 2021 [98]
AMD Ryzen 7 1800X (8-core)304,510 MIPS at 3.7 GHz82.310.292017[99]
Intel Core i7-8086K (6-core)221,720 MIPS at 5.0 GHz44.347.392018[100]
Intel Core i9-9900K (8-core)412,090 MIPS at 4.7 GHz87.6810.962018[101]
AMD Ryzen 9 3950X (16-core)749,070 MIPS at 4.6 GHz162.8410.182019[101]
AMD Ryzen Threadripper 3990X (64 core)2,356,230 MIPS at 4.35 GHz541.668.462020[102]
Intel Core i5-11600K (6-core)346,350 MIPS at 4.92 GHz57.7211.732021[103]
Processor / System Dhrystone MIPS / MIPS D instructions per clock cycle D instructions per clock cycle per core Year Source

See also

References

  1. US, Dell. "Technical Resources migrated from TechCenter - Dell US". en.community.dell.com.
  2. Gibson, J.C. (1970). The Gibson Mix (Technical Report TR 00.2043). Poughkeepsie, N.Y.: IBM Systems Development Division.
  3. Elliot, Jimmie Lynn (5 June 1975). "Appendix E, The Gibson Mix by Jack C. Gibson". Computer Performance and Evaluation Utilizating the Resource Planing and Management System, Masters Thesis. Oregon State University. pp. 88–92. Retrieved 21 March 2021.
  4. Ted MacNeil. "Don't be Misled by MIPS". IBM magazine. Archived from the original on 23 July 2012. Retrieved 15 November 2009.
  5. Musumeci, Gian-Paolo D.; Loukides, Mike; Loukides, Michael Kosta (2002). System Performance Tuning. p. 32. ISBN 9780596002848.
  6. "The Best of Both Worlds: Mac II vs. IBM PS/2 Model 80". PC Magazine. 24 November 1987. p. 105.
  7. US Steel News. Vol. 15–20. Industrial Relations Department of The United States Steel Corporation of Delaware. 1950–1955. p. 29.
  8. Padua, David (8 September 2011). Encyclopedia of Parallel Computing. Springer Science & Business Media. ISBN 9780387097657.
  9. Meagher, R.E. (9 May 1961). "STRETCH Report" (PDF). Computer History.
  10. "Control Data Corporation, CDC-6600 & 7600". ed-thelen.org. Retrieved 25 May 2017.
  11. "Control Data 6600: The Supercomputer Arrives". Dr. Dobb's. Archived from the original on 5 June 2017. Retrieved 25 May 2017.
  12. "MCS4 > IntelP4004". www.cpushack.com. Retrieved 29 June 2023.
  13. "Cost of CPU Performance Through Time 1944-2003". Archived from the original on 9 October 2014.
  14. "Intel Processors". 24 April 2012. Archived from the original on 24 April 2012.
  15. "History of Computers and Computing, Birth of the modern computer, Electronic computer, Cray computers of Seymour Cray". history-computer.com. Retrieved 25 May 2017.
  16. Drolez, Ludovic. "Lud's Open Source Corner".
  17. 2 cycles per instruction
  18. 1 instruction per cycle
  19. 4 cycles per instruction Archived 2015-06-09 at the Wayback Machine = 0.25 instructions per cycle
  20. "intel :: dataSheets :: 8048 8035 HMOS Single Component 8-Bit Microcomputer DataSheet 1980". 1980.
  21. "Sega G80 Hardware Reference". 25 October 1997. Archived from the original on 19 February 2012.
  22. "System 16 - Irem M27 Hardware (Irem)". www.system16.com. Retrieved 29 June 2023.
  23. 10% faster than 68000 (0.175 MIPS per MHz )
  24. NEC V20/V30: "250 nanoseconds per instruction @ 8 MHz" means some fastest 2-clock register-register instructions only
  25. LINKS-1 Computer Graphics System: 257× Zilog Z8001 at 10 MHz (2.5 MIPS Archived 2015-06-09 at the Wayback Machine) each
  26. "TMS320C1x DIGITAL SIGNAL PROCESSORS" (PDF). Archived from the original (PDF) on 6 October 2014.
  27. "32-Bit Microprocessor-NXP".
  28. "ZTAT (ZeroTurnAroundTime) Microcomputers" (PDF). Archived from the original (PDF) on 6 October 2014.
  29. "HD63705V0 ... - Datasheet Search Engine Download" (PDF). www.datasheetarchive.com. Archived from the original (PDF) on 18 September 2014. Retrieved 13 January 2022.
  30. 1 instruction per cycle
  31. Sega System 16: Hitachi-Motorola 68000 @ 10 MHz (1.75 MIPS), NEC-Zilog Z80 @ 4 MHz (0.58 MIPS) , Intel 8751 @ 8 MHz (8 MIPS ), Intel 8048 @ 6 MHz "Sega Pre-System 16 hardware notes". Archived from the original on 25 January 2016. Retrieved 8 August 2016. (6 MIPS )
  32. "ARM2 - Microarchitectures - Acorn". Wikichip.org. Retrieved 17 October 2018.
  33. "InfoWorld". InfoWorld Media Group, Inc. 23 January 1989 via Google Books.
  34. Yasuhiko Komoto; Tatsuya Saito; Kazumasa Mine. "情報学広場:情報処理学会電子図書館" [Overview of 32-bit V-Series Microprocessor]. Advanced Products Department Microcomputer Division NEC Corporation.
  35. "PC Mag". Ziff Davis, Inc. 24 November 1987 via Google Books.
  36. "Enhanced 32-Bit Processor-NXP".
  37. "TRON VLSI CPU Introduction". tronweb.super-nova.co.jp. Retrieved 29 June 2023.
  38. "060 1987 Drivers Eyes + 1989 Winning Run" (PDF). The history of racing games. June 2007.
  39. "Analog Devices ADSP-2100KG datasheet pdf". www.datasheetcatalog.com. Retrieved 29 June 2023.
  40. Namco System 21 hardware: 5× Texas Instruments TMS320C20 @ 25 MHz (62.5 MIPS ), 2× Motorola 68000 @ 12.288 MHz (4.301 MIPS ), Motorola 68020 @ 12.5 MHz (3.788 MIPS ), Hitachi HD63705 @ 2.048 MHz (2.048 MIPS ), Motorola 6809 @ 3.072 MHz (1.29 MIPS )
  41. "Intel i860-based Bus Boards". Archived from the original on 25 June 2013.
  42. Atari Hard Drivin' hardware: Motorola 68000 @ 7 MHz (1.225 MIPS ), Motorola 68010 @ 7 MHz (1.348 MIPS ), 3× Texas Instruments TMS34010 @ 50 MHz (18 MIPS ), Analog Devices ADSP-2100 @ 8 MHz (8 MIPS ), Texas Instruments TMS32010 @ 20 MHz (5 MIPS "TMS320C1x Digital Signal Processors" (PDF). Archived from the original (PDF) on 6 October 2014. Retrieved 17 September 2014.)
  43. "SUPERCOMPUTER". Pik - Praxis der Informationsverarbeitung und Kommunikation. 13 (4). 1990. doi:10.1515/piko.1990.13.4.205. Archived from the original on 9 November 2014. Retrieved 29 September 2014.
  44. "ARM3 - Microarchitectures - Acorn". Wikichip.org. Retrieved 17 October 2018.
  45. "(Including EC, LC, and V)-NXP".
  46. Namco System 21 (Galaxian³) hardware: 80× Texas Instruments TMS320C25 @ 40 MHz (1600 MIPS ), 5× Motorola 68020 @ 24.576 MHz (37.236 MIPS ) Motorola 68000 @ 12.288 MHz (2.15 MIPS ), 10× Motorola 68000 @ 12 MHz (21 MIPS )
  47. Enterprise, I. D. G. (25 March 1991). "Computerworld". IDG Enterprise via Google Books.
  48. Digital's 21064 Microprocessor, Digital Equipment Corporation (c1992) accessdate=2009-08-29
  49. "System 16 - Namco Magic Edge Hornet Simulator Hardware (Namco)". www.system16.com. Retrieved 29 June 2023.
  50. Uchiyama, Kunio; Arakawa, Fumio; Narita, Susumu; Aoki, Hirokazu; Kawasaki, Ikuya; Matsui, Shigezumi; Yamamoto, Mitsuyoshi; Nakagawa, Norio; Kudo, Ikuo (1 September 1993). "The Gmicro/500 Superscalar Microprocessor with Branch Buffers". IEEE Micro. 13 (5): 12–22. doi:10.1109/40.237998. S2CID 30178249.
  51. "dhrystone". www.netlib.org. Retrieved 29 June 2023.
  52. 24× MIPS R4400 (2040 MIPS), 12× Intel i860 (600 MIPS) "Intel i860-based Bus Boards". Archived from the original on 25 June 2013. Retrieved 17 September 2014.
  53. "DCTP - Saturn Specifications". Archived from the original on 1 March 2003.
  54. "Charts, benchmarks CPU Charts 2004, Sandra - CPU Dhrystone". Archived from the original on 5 February 2013.
  55. "PIC16F84A - 8-bit PIC Microcontrollers". Retrieved 29 June 2023.
  56. "MOTOROLA P OWER PC 603 E ™ MICROPROCESSOR" (PDF). Archived from the original (PDF) on 18 September 2014. Retrieved 17 September 2014.
  57. "SiSoftware – Windows, Android, GPGPU, CUDA, OpenCL, analysers, diagnostic and benchmarking apps". 23 April 2023. Retrieved 29 June 2023.
  58. "DCTP - Hitachi's 200 MHz SH-4". Archived from the original on 11 December 2014. Retrieved 18 September 2014.
  59. "DCTP - January 1998 News Archives". Archived from the original on 5 March 2016.
  60. "Zilog Sees New Lease of Life for Z80 in Internet Appliances". Computergram International. 1999. Archived from the original on 25 May 2012.
  61. Sega Naomi Multiboard hardware: Archived 2014-10-06 at the Wayback Machine 16× Hitachi SH-4 at 200 MHz (5760 MIPS Archived 2014-12-11 at the Wayback Machine), 16× ARM7 at 45 MHz (640 MIPS )
  62. "Freescale Semiconductor - MPC8272 PowerQUICC II Processor Family" (PDF). Archived from the original (PDF) on 18 February 2012. Retrieved 13 May 2008.
  63. "ZISC78 datasheet & application notes - Datasheet Archive". www.datasheetarchive.com. Retrieved 29 June 2023.
  64. Shimpi, Anand Lal. "ARM's Cortex A7: Bringing Cheaper Dual-Core & More Power Efficient High-End Devices".
  65. "PIC10F200 - 8-bit PIC Microcontrollers". Retrieved 29 June 2023.
  66. "Microchip Redirect". Archived from the original on 6 October 2014.
  67. "Cortex-M3". developer.arm.com. Retrieved 29 June 2023.
  68. "FPGA Documentation Index". Intel. Retrieved 29 June 2023.
  69. "MIPS Architecture Enabling Growing List of Mobile Application Processors". Design And Reuse. Retrieved 29 June 2023.
  70. "mini-itx.com - epia px 10000 review". www.mini-itx.com. Retrieved 29 June 2023.
  71. Ltd, Arm. "Microprocessor Cores and Processor Technology – Arm®". Arm | The Architecture for the Digital World. Retrieved 29 June 2023.
  72. "Charts, benchmarks CPU Charts 2007, Synthetic SiSoft Sandra XI CPU". Archived from the original on 4 February 2013.
  73. "RISC Microprocessor". www.nxp.com. Retrieved 29 June 2023.
  74. "Cortex-R4". developer.arm.com. Retrieved 29 June 2023.
  75. "24K". Archived from the original on 14 May 2011. Retrieved 29 June 2023.
  76. "All content Archive | June 2023". Tom's Hardware. Retrieved 29 June 2023.
  77. "Semiconductor IP Cores Companies". www.design-reuse.com. Retrieved 29 June 2023.
  78. Merritt, Rick (5 February 2007). "Startup takes PowerPC to 25 W". EE Times. UBM Tech. Archived from the original on 21 January 2013. Retrieved 20 November 2012.
  79. "Benchmarks of ECS 945GCT-D with Intel Atom 1.6GHz". www.ocworkbench.com. Retrieved 29 June 2023.
  80. "Charts, benchmarks Desktop CPU Charts 2010, ALU Performance: SiSoftware Sandra 2010 Pro (ALU)". Archived from the original on 4 February 2013.
  81. "Cortex-M0". developer.arm.com. Retrieved 29 June 2023.
  82. "EEE Journal: ARM11 vs Cortex A8 vs Cortex A9 - Netbooks processors EEE PC, MSI Wind, HP, Acer Aspire, ARM Cortex vs Intel Atom". Archived from the original on 19 July 2011.
  83. "The Phenom II List of Overclocks - Page 21". Archived from the original on 4 April 2009. Retrieved 15 January 2009.
  84. "OC3D :: Review :: Intel 980x Gulftown :: Synthetic Benchmarks". 12 March 2010.
  85. "Benchmark Results: Sandra 2011 - ASRock's E350M1: AMD's Brazos Platform Hits The Desktop First". 14 January 2011.
  86. "Samsung Semiconductor Global Official Website".
  87. "Core i5 2500K and Core i7 2600K review". Guru3D.com. Archived from the original on 29 June 2023. Retrieved 29 June 2023.
  88. "Test: Sandra Dhrystone (MIPS) for i7-4770K, i7-3770K, FX-8350, FX-8150". www.cpu-world.com. Retrieved 29 June 2023.
  89. "Benchmark Results: SiSoftware Sandra 2011 - The Intel Core i7-990X Extreme Edition Processor Review". 25 February 2011.
  90. "HardOCP - Synthetic Benchmarks". Archived from the original on 16 November 2011. Retrieved 14 November 2011.
  91. "AMD FX-8350 Black Edition vs Intel Core i7-4770K: What is the difference?". VERSUS. Retrieved 29 June 2023.
  92. "Intel Core i7-4770K Desktop Processor". Notebookcheck. Retrieved 29 June 2023.
  93. Rob Williams (29 August 2014). "Core i7-5960X Extreme Edition Review: Intel's Overdue Desktop 8-Core Is Here". Techgage.
  94. By (5 February 2015). "Benchmarking The Raspberry Pi 2". hackaday.com.
  95. ccokeman (30 May 2016). "Intel Core I7 6950X Extreme Edition Broadwell-E CPU Review".
  96. Dezső Sima (November 2018). "ARM's processor lines" (PDF). uni-obuda.hu. Retrieved 29 June 2023.
  97. "Overview of ARM's Cortex-A series" (PDF). elearning.unicampania.it. Retrieved 29 June 2023.
  98. "Application note. Sitara™AM64x /AM243x Benchmarks" (PDF). ti.com. Retrieved 29 June 2023.
  99. Chiappetta, Marco (2 March 2017). "AMD Ryzen 7 1800X, 1700X, And 1700 Review And Benchmarks: Zen Brings The Fight Back To Intel". HotHardware. Archived from the original on 5 March 2017. Retrieved 5 March 2017.
  100. "Details for Component Intel Core i7-8086K". SiSoftware Official Live Ranker.
  101. Marco Chiappetta (14 November 2019). "AMD Ryzen 9 3950X Review: A 16-Core Zen 2 Powerhouse". HotHardware. Archived from the original on 6 March 2020. Retrieved 22 March 2020.
  102. Marco Chiappetta (7 February 2020). "AMD Threadripper 3990X Review: A 64-Core Multithreaded Beast Unleashed". HotHardware. Archived from the original on 18 March 2020. Retrieved 22 March 2020.
  103. Chiappetta, Marco (30 March 2021). "Intel Core i9-11900K And i5-11600K Review: Rocket Lake-S Liftoff". HotHardware.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.