Kepler-42

Kepler-42, formerly known as KOI-961, is a red dwarf located in the constellation Cygnus and approximately 131 light years from the Sun. It has three known extrasolar planets, all of which are smaller than Earth in radius,[5] and likely also in mass.

Kepler-42

Artist's impression of the Kepler-42 (KOI-961) system
Credit: NASA
Observation data
Epoch J2000      Equinox J2000
Constellation Cygnus
Right ascension 19h 28m 52.5688s[1]
Declination 44° 37 08.990[1]
Apparent magnitude (V) 16.12[2]
Characteristics
Spectral type M5V[3]
Astrometry
Radial velocity (Rv)−84.48±0.2[3] km/s
Proper motion (μ) RA: 93.126±0.073[1] mas/yr
Dec.: −417.420±0.067[1] mas/yr
Parallax (π)24.9340 ± 0.0401 mas[1]
Distance130.8 ± 0.2 ly
(40.11 ± 0.06 pc)
Details
Mass0.144+0.007
0.006
[4] M
Radius0.175±0.006[4] R
Luminosity3.08±0.28x10−3.0[4] L
Temperature3269±19[4] K
Metallicity [Fe/H]−0.48±0.17[3] dex
Rotational velocity (v sin i)2.9±0.4[3] km/s
Other designations
2MASS J19285255+4437096, KIC 8561063, LSPM J1928+4437, Gaia DR2 2126556132093765888, KOI-961
Database references
SIMBADdata
KICdata

Characteristics

Kepler-42's mass is estimated to be 0.13 times that of the Sun, and a radius 0.17 times that of the Sun, just 1.7 times that of the gas giant Jupiter. Due to its small radius and hence surface area, the luminosity of Kepler-42 is only 0.24% of that of the Sun. Its metallicity is one third of the Sun's. Kepler-42 has an appreciable proper motion of up to 431±8 mas/yr.[3] Due to its small size and low temperature, the star's habitable zone is much closer to the star than Earth is to the Sun.

Planetary system

Earth, Mars and the planets of this system compared to Kepler-20e and Kepler-20f, the first terrestrial-sized exoplanets to be discovered outside of the Solar System
The Kepler-42 system as compared to the Jovian system[note 1]

The planetary system comprising three transiting planets was discovered in February 2011[6] and confirmed on 10 January 2012, using the Kepler Space Telescope. These planets' radii range from approximately those of Mars to Venus. The Kepler-42 system is only the second known system containing planets of Earth's radius or smaller (the first was the Kepler-20 system pictured at left). These planets' orbits are also compact, making the system (whose host star itself has a radius comparable to those of some hot Jupiters) resemble the moon systems of giant planets such as Jupiter or Saturn more than it does the Solar System. Despite these planets' small size and the star's being one of the faintest stars in Kepler field with confirmed planets, the detection of these planets was possible due to the small size of the star, causing these planets to block a larger proportion of starlight during their transits.

Not all of the orbital parameters of the system are known. For example, as with all transiting planets that have not had their properties established by means of other methods such as the radial velocity method, the orbital eccentricity remains unknown.

Based on the orbits of the planets and the luminosity and effective temperature of the host star, the equilibrium temperatures of the planets can be calculated. Assuming an extremely high albedo of 0.9 and absence of greenhouse effect, the outer planet Kepler-42 d would have an equilibrium temperature of about 280 K (7 °C),[7] similar to Earth's 255 K (−18 °C).[8] Estimates for the known planets are in the tables below:

Temperature
comparisons
Kepler-42c Kepler-42b Kepler-42d Earth
Global
equilibrium
temperature
728 K
455 °C
851 °F
524 K
251 °C
483.8 °F
454 K
181 °C
357.8 °F
255 K
−18 °C
−0.4 °F
References:[7][note 2]
The Kepler-42 planetary system[4][9]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
c <2.06 M🜨 0.006 0.45328731±0.00000005 0 0.73±0.03 R🜨
b <2.73 M🜨 0.0116 1.21377060+0.00000023
0.00000025
0 0.76±0.03 R🜨
d <0.9 M🜨 0.0154 1.86511236+0.00000075
0.00000071
0 0.67+0.04
0.03
 R🜨

Notes

  1. Orbit sizes to scale with each other, but not to the sizes of their respective host bodies
  2. Temperature values for all planets assuming an albedo of 0.3, Earth's value.

References

  1. Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  2. "Star: KOI-961 – 3 PLANETS". Extrasolar Planets Encyclopaedia. 2012-01-12. Retrieved 2012-01-12.
  3. Philip S. Muirhead; John Asher Johnson; Kevin Apps; Joshua A. Carter; Timothy D. Morton; Daniel C. Fabrycky; J. Sebastian Pineda; Michael Bottom; Barbara Rojas-Ayala; Everett Schlawin; Katherine Hamren; Kevin R. Covey; Justin R. Crepp; Keivan G. Stassun; Joshua Pepper; Leslie Hebb; Evan N. Kirby; Andrew W. Howard; Howard T. Isaacson; Geoffrey W. Marcy; David Levitan; Tanio Diaz-Santos; Lee Armus; James P. Lloyd (2012). "Characterizing the Cool KOIs III. KOI-961: A Small Star with Large Proper Motion and Three Small Planets". The Astrophysical Journal. 747 (2): 144. arXiv:1201.2189. Bibcode:2012ApJ...747..144M. doi:10.1088/0004-637X/747/2/144. S2CID 14889361.
  4. Mann, Andrew W.; Dupuy, Trent; Muirhead, Philip S.; Johnson, Marshall C.; Liu, Michael C.; Ansdell, Megan; Dalba, Paul A.; Swift, Jonathan J.; Hadden, Sam (2017), "THE GOLD STANDARD: ACCURATE STELLAR AND PLANETARY PARAMETERS FOR EIGHT Kepler M DWARF SYSTEMS ENABLED BY PARALLAXES", The Astronomical Journal, 153 (6): 267, arXiv:1705.01545, Bibcode:2017AJ....153..267M, doi:10.3847/1538-3881/aa7140, S2CID 119325474
  5. "KOI-961: A Mini-Planetary System". NASA Ames Research Center Kepler, A Search for Habitable Planets. NASA Ames Research Center Kepler. 2012-01-11. Archived from the original on 2012-03-14. Retrieved 2012-01-11.
  6. Fressin, François; et al. (2011). "Kepler-10 c: a 2.2 Earth Radius Transiting Planet in a Multiple System". The Astrophysical Journal Supplement Series. 197 (1). 5. arXiv:1105.4647. Bibcode:2011ApJS..197....5F. doi:10.1088/0067-0049/197/1/5. S2CID 38317440.
  7. "Planet Equilibrium Temperature". Habitable Exoplanets Catalog. Planetary Habitability Laboratory at the University of Puerto Rico. Archived from the original on 24 August 2017. Retrieved 29 February 2012.
  8. "Radiating Equilibrium Temperature". University of Wisconsin Marathon County - Department of Geology/Geography. Archived from the original on 3 September 2006. Retrieved 29 February 2012.
  9. "How many exoplanets has Kepler discovered?". 2015-04-09. Archived from the original on 2010-05-27.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.