LLZO

Lithium lanthanum zirconium oxide (LLZO, Li7La3Zr2O12) or lithium lanthanum zirconate is a lithium-stuffed garnet material that is under investigation for its use in solid-state electrolytes in lithium-based battery technologies.[1][2] LLZO has a high ionic conductivity and chemical stability against lithium metal, giving it an advantage for use as an electrolyte in solid-state batteries.[3]

LLZO
Identifiers
3D model (JSmol)
  • InChI=1S/3La.7Li.12O.2Zr/q3*+3;7*+1;12*-2;2*+4
    Key: SHSHVJZBGYRKOB-UHFFFAOYSA-N
  • [La+3].[La+3].[La+3].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Zr+4].[Zr+4]
Properties
La3Li7O12Zr2
Molar mass 839.73 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Press reports have stated that LLZO is believed to be the electrolyte used by QuantumScape for their solid-state lithium metal battery.[4]

LLZO has also been used as an electrolyte material in next-generation lithium-sulfur batteries.[5]

References

  1. Yeandel, Stephen R.; Chapman, Benjamin J.; Slater, Peter R.; Goddard, Pooja (2018-12-13). "Structure and Lithium-Ion Dynamics in Fluoride-Doped Cubic Li7La3Zr2O12 (LLZO) Garnet for Li Solid-State Battery Applications". The Journal of Physical Chemistry C. 122 (49): 27811–27819. doi:10.1021/acs.jpcc.8b07704. ISSN 1932-7447. S2CID 105578102.
  2. Tsai, Chih-Long; Ma, Qianli; Dellen, Christian; Lobe, Sandra; Vondahlen, Frank; Windmüller, Anna; Grüner, Daniel; Zheng, Hao; Uhlenbruck, Sven; Finsterbusch, Martin; Tietz, Frank (2018-12-18). "A garnet structure-based all-solid-state Li battery without interface modification: resolving incompatibility issues on positive electrodes". Sustainable Energy & Fuels. 3 (1): 280–291. doi:10.1039/C8SE00436F. ISSN 2398-4902. S2CID 139965509.
  3. Ramakumar, S.; Deviannapoorani, C.; Dhivya, L.; Shankar, Lakshmi S.; Murugan, Ramaswamy (2017-07-01). "Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications". Progress in Materials Science. 88: 325–411. doi:10.1016/j.pmatsci.2017.04.007. ISSN 0079-6425.
  4. Temple, James (2020-12-08). "This super energy dense battery could nearly double the range of electric vehicles". MIT Technology Review. Retrieved 2020-12-08.
  5. "Battery and Supercapacitor Materials". American Elements. Retrieved 2022-12-09.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.