Salicylaldehyde

Salicylic aldehyde (2-hydroxybenzaldehyde) is the organic compound with the formula () C6H4CHO-2-OH.[3] Along with 3-hydroxybenzaldehyde and 4-hydroxybenzaldehyde, it is one of the three isomers of hydroxybenzaldehyde. This colorless oily liquid has a bitter almond odor at higher concentration. Salicylaldehyde is a key precursor to a variety of chelating agents, some of which are commercially important.

Salicylic aldehyde
Skeletal formula
Skeletal formula
Ball-and-stick model
Ball-and-stick model
Names
Preferred IUPAC name
2-Hydroxybenzaldehyde[1]
Other names
Salicylaldehyde
Salicylic aldehyde
o-Hydroxybenzaldehyde
Identifiers
3D model (JSmol)
471388
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.001.783
EC Number
  • 201-961-0
3273
KEGG
UNII
  • InChI=1S/C7H6O2/c8-5-6-3-1-2-4-7(6)9/h1-5,9H checkY
    Key: SMQUZDBALVYZAC-UHFFFAOYSA-N checkY
  • InChI=1/C7H6O2/c8-5-6-3-1-2-4-7(6)9/h1-5,9H
    Key: SMQUZDBALVYZAC-UHFFFAOYAD
  • O=Cc1ccccc1O
Properties
C7H6O2
Molar mass 122.123 g·mol−1
Density 1.146 g/cm3
Melting point −7 °C (19 °F; 266 K)
Boiling point 196 to 197 °C (385 to 387 °F; 469 to 470 K)
-64.4·10−6 cm3/mol
Hazards[2]
GHS labelling:
GHS07: Exclamation markGHS09: Environmental hazard
Warning
H302, H315, H317, H319, H335, H411
P280, P305+P351+P338
Safety data sheet (SDS) [2]
Related compounds
Related compounds
Salicylic acid
Benzaldehyde
Salicylaldoxime
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Infobox references

Production

Salicylaldehyde is prepared from phenol and chloroform by heating with sodium hydroxide or potassium hydroxide in a Reimer–Tiemann reaction:[4]

Preparation of salicylaldehyde by the Reimer–Tiemann reaction

Alternatively, it is produced by condensation of phenol or its derivatives with formaldehyde to give hydroxybenzyl alcohol, which is oxidized to the aldehyde.

Salicylaldehydes in general may be prepared by other ortho-selective formylation reactions from the corresponding phenol, for instance by the Duff reaction, Reimer–Tiemann reaction, or by treatment with paraformaldehyde in the presence of magnesium chloride and a base.[5]

Natural occurrences

Salicylaldehyde was identified as a characteristic aroma component of buckwheat.[6]

It is also one of the components of castoreum, the exudate from the castor sacs of the mature North American beaver (Castor canadensis) and the European beaver (Castor fiber), used in perfumery.

Furthermore, salicylaldehyde occurs in the larval defensive secretions of several leaf beetle species that belong the subtribe Chrysomelina.[7] An example for a leaf beetle species that produces salicylaldehyde is the red poplar leaf beetle Chrysomela populi.

Reactions and applications

Salicylaldehyde is used to make the following:

Catechol, benzofuran, a salicylaldehydimine (R = alkyl or aryl), 3-carbethoxycoumarin
  1. Oxidation with hydrogen peroxide gives catechol (1,2-dihydroxybenzene) (Dakin reaction).[8]
  2. Etherification with chloroacetic acid followed by cyclisation gives the heterocycle benzofuran (coumarone).[9] The first step in this reaction to the substituted benzofuran is called the Rap–Stoermer condensation after E. Rap (1895) and R. Stoermer (1900).[10][11]
  3. Salicylaldehyde is converted to chelating ligands by condensation with amines. With ethylenediamine, it condenses to give the ligand salen. Hydroxylamine gives salicylaldoxime.
  4. Condensation with diethyl malonate gives 3-carbethoxycoumarin (a derivative of coumarin) by an aldol condensation.[12]

Internal hydrogen bonding

Due to the ortho positioning of the hydroxy- and aldehyde groups, an internal hydrogen bond is formed between the groups. The hydroxy group serves here as the hydrogen bond donor, and the aldehyde as hydrogen bond acceptor. This internal hydrogen is not found in the other hydroxybenzaldehyde isomers. When the aldehyde is reacted with an amine to form an imine, the internal hydrogen bond is even stronger.[13] In addition, tautomerisation further increases the stability of the compound.[14] The internal hydrogen bond also ensures that the aldehyde (or corresponding imine) is held into the same plane, making the whole molecule essentially flat.[15]

References

  1. "Front Matter". Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 652. doi:10.1039/9781849733069-FP001. ISBN 978-0-85404-182-4.
  2. Sigma-Aldrich Co., Salicylaldehyde. Retrieved on 2018-05-24.
  3. Merck Index, 11th Edition, 8295
  4. Brühne, F.; Wright, E. "Benzaldehyde". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a03_463.pub2.{{cite encyclopedia}}: CS1 maint: multiple names: authors list (link)
  5. Trond Vidar Hansen; Lars Skattebøl (2005). "Ortho-Formylation of Phenols; Preparation of 3-Bromosalicylaldehyde". Organic Syntheses. 82: 64. doi:10.15227/orgsyn.089.0220.
  6. Janeš, D.; Kreft, S. (2008). "Salicylaldehyde is a characteristic aroma component of buckwheat groats". Food Chemistry. 109 (2): 293–298. doi:10.1016/j.foodchem.2007.12.032. PMID 26003350.
  7. Pauls, G., Becker, T., et al. (2016). Two Defensive Lines in Juvenile Leaf Beetles; Esters of 3-nitropropionic Acid in the Hemolymph and Aposematic Warning. Journal of Chemical Ecology 42 (3) 240-248.
  8. Dakin, H. D. (1923). "Catechol" (PDF). Organic Syntheses. 3: 28.; Collective Volume, vol. 1, p. 149
  9. Burgstahler, A. W.; Worden, L. R. (1966). "Coumarone" (PDF). Organic Syntheses. 46: 28.{{cite journal}}: CS1 maint: multiple names: authors list (link); Collective Volume, vol. 5, p. 251
  10. Rap, E. (November 1895). "Sull' α-Benzoilcumarone" [On the α-Benzoylcoumaron]. Gazzetta Chimica Italiana. 2 (4): 285–290.
  11. Stoermer, R. (1900). "Synthesen und Abbaureactionen in der Cumaronreihe". Liebig's Annalen der Chemie. 312 (3): 237–336. doi:10.1002/jlac.19003120302.
  12. Horning, E. C.; Horning, M. G.; Dimmig, D. A. (1948). "3-Carbethoxycoumarin" (PDF). Organic Syntheses. 28: 24.{{cite journal}}: CS1 maint: multiple names: authors list (link); Collective Volume, vol. 3, p. 165
  13. Schoustra, S.K.; Asadi, V.; Zuilhof, H.; Smulders, M.M.J. (2023). "Internal hydrogen bonding of imines to control and enhance the dynamic mechanical properties of covalent adaptable networks". European Polymer Journal. 195: 112209. doi:10.1016/j.eurpolymj.2023.112209.
  14. Metzler, C.M.; Cahill, A.; Metzler, D.E. (1980). "Equilibriums and absorption spectra of Schiff bases". J. Am. Chem. Soc. 102 (19): 6075–6082. doi:10.1021/ja00539a017.
  15. Kandambeth, S.; Shinde, D.B; Panda, M.K.; Lukose, B.; Heine, T.; Banerjee, R. (2013). "Enhancement of Chemical Stability and Crystallinity in Porphyrin-Containing Covalent Organic Frameworks by Intramolecular Hydrogen Bonds". Angew. Chem. Int. Ed. 52 (49): 13052–13056. doi:10.1002/anie.201306775.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.