Timeline of classical mechanics

The following is a timeline of classical mechanics:

Early mechanics

Formation of classical mechanics

References

  1. Ossendrijver, Mathieu (29 Jan 2016). "Ancient Babylonian astronomers calculated Jupiter's position from the area under a time-velocity graph". Science. 351 (6272): 482–484. Bibcode:2016Sci...351..482O. doi:10.1126/science.aad8085. PMID 26823423. S2CID 206644971. Retrieved 29 January 2016.
  2. Sambursky, Samuel (2014). The Physical World of Late Antiquity. Princeton University Press. pp. 65–66. ISBN 9781400858989.
  3. Sorabji, Richard (2010). "John Philoponus". Philoponus and the Rejection of Aristotelian Science (2nd ed.). Institute of Classical Studies, University of London. p. 47. ISBN 978-1-905-67018-5. JSTOR 44216227. OCLC 878730683.
  4. O'Connor, John J.; Robertson, Edmund F., "Al-Biruni", MacTutor History of Mathematics Archive, University of St Andrews:
    "One of the most important of al-Biruni's many texts is Shadows which he is thought to have written around 1021. [...] Shadows is an extremely important source for our knowledge of the history of mathematics, astronomy, and physics. It also contains important ideas such as the idea that acceleration is connected with non-uniform motion, using three rectangular coordinates to define a point in 3-space, and ideas that some see as anticipating the introduction of polar coordinates."
  5. Shlomo Pines (1964), "La dynamique d’Ibn Bajja", in Mélanges Alexandre Koyré, I, 442-468 [462, 468], Paris.
    (cf. Abel B. Franco (October 2003). "Avempace, Projectile Motion, and Impetus Theory", Journal of the History of Ideas 64 (4), p. 521-546 [543]: "Pines has also seen Avempace's idea of fatigue as a precursor to the Leibnizian idea of force which, according to him, underlies Newton's third law of motion and the concept of the "reaction" of forces.")
  6. Pines, Shlomo (1970). "Abu'l-Barakāt al-Baghdādī , Hibat Allah". Dictionary of Scientific Biography. Vol. 1. New York: Charles Scribner's Sons. pp. 26–28. ISBN 0-684-10114-9.:
    (cf. Abel B. Franco (October 2003). "Avempace, Projectile Motion, and Impetus Theory", Journal of the History of Ideas 64 (4), p. 521-546 [528]: Hibat Allah Abu'l-Barakat al-Bagdadi (c.1080- after 1164/65) extrapolated the theory for the case of falling bodies in an original way in his Kitab al-Mu'tabar (The Book of that Which is Established through Personal Reflection). [...] This idea is, according to Pines, "the oldest negation of Aristotle's fundamental dynamic law [namely, that a constant force produces a uniform motion]," and is thus an "anticipation in a vague fashion of the fundamental law of classical mechanics [namely, that a force applied continuously produces acceleration].")
  7. Clagett (1968, p. 561), Nicole Oresme and the Medieval Geometry of Qualities and Motions; a treatise on the uniformity and difformity of intensities known as Tractatus de configurationibus qualitatum et motuum. Madison, WI: University of Wisconsin Press. ISBN 0-299-04880-2.
  8. Grant, 1996, p.103.
  9. F. Jamil Ragep (2001), "Tusi and Copernicus: The Earth's Motion in Context", Science in Context 14 (1-2), p. 145–163. Cambridge University Press.
  10. "Timeline of Classical Mechanics and Free Fall". www.scientus.org. Retrieved 2019-01-26.
  11. Sharratt, Michael (1994). Galileo: Decisive Innovator. Cambridge: Cambridge University Press. ISBN 0-521-56671-1, p. 198
  12. Wallace, William A. (2004). Domingo de Soto and the Early Galileo. Aldershot: Ashgate Publishing. ISBN 0-86078-964-0 (pp. II 384, II 400, III 272)
  13. Ismail Bullialdus, Astronomia Philolaica … (Paris, France: Piget, 1645), page 23.
  14. Rob Iliffe & George E. Smith (2016). The Cambridge Companion to Newton. Cambridge University Press. p. 75. ISBN 9781107015463.
  15. Hermann, J (1710). "Unknown title". Giornale de Letterati d'Italia. 2: 447–467.
    Hermann, J (1710). "Extrait d'une lettre de M. Herman à M. Bernoulli datée de Padoüe le 12. Juillet 1710". Histoire de l'Académie Royale des Sciences. 1732: 519–521.
  16. Poinsot (1834) Theorie Nouvelle de la Rotation des Corps, Bachelier, Paris
  17. Parker, E.N. (1954). "Tensor Virial Equations". Physical Review. 96 (6): 1686–1689. Bibcode:1954PhRv...96.1686P. doi:10.1103/PhysRev.96.1686.
  18. V. I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (Springer, New York, 1978), Vol. 60.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.