YTH protein domain

In molecular biology, the protein domain, YTH refers to a member of the YTH family that has been shown to selectively remove transcripts of meiosis-specific genes expressed in mitotic cells.[1]

YTH protein domain
Identifiers
SymbolYTH
PfamPF04146
Pfam clanCL0178
InterProIPR007275
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

This protein domain, the YTH-domain, is conserved across all eukaryotes and suggests that the conserved C-terminal region plays a critical role in relaying the cytosolic Ca-signals to the nucleus, thereby regulating gene expression.[2]

Function/mechanism

It has been speculated that in higher eukaryotic YTH-family members may be involved in similar mechanisms to suppress gene regulation during gametogenesis or general silencing. The rat protein YT521-B, SWISSPROT, is a tyrosine-phosphorylated nuclear protein, that interacts with the nuclear transcriptosomal component scaffold attachment factor B, and the 68kDa Src substrate associated during mitosis, Sam68. In vivo splicing assays demonstrated that YT521-B modulates alternative splice site selection in a concentration-dependent manner.[3] Additionally, it is also thought that YTH domain has a role in RNA binding. [4]

Structure

The domain is predicted to be a mixed alpha/beta-fold containing four alpha helices and six beta strands.[4]

Plant

In plant cells environmental stimuli, which light, pathogens, hormones, and abiotic stresses, elicit changes in the cytosolic calcium levels but little is known of the cytosolic-nuclear Ca-signaling pathway; where gene regulation occurs to respond appropriately to the stress. It has been demonstrated that two novel Arabidopsis thaliana (Mouse-ear cress) proteins, (ECT1 and ECT2), specifically associated with Calcineurin B-Like-Interacting Protein Kinase1 (CIPK1), a member of Ser/Thr protein kinases that interact with the calcineurin B-like Ca-binding proteins. These two proteins contain a very similar C-terminal region (180 amino acids in length, 81% similarity), which is required and sufficient for both interaction with CIPK1 and translocation to the nucleus.

References

  1. Harigaya Y, Tanaka H, Yamanaka S, Tanaka K, Watanabe Y, Tsutsumi C, Chikashige Y, Hiraoka Y, Yamashita A, Yamamoto M (July 2006). "Selective elimination of messenger RNA prevents an incidence of untimely meiosis". Nature. 442 (7098): 45–50. doi:10.1038/nature04881. PMID 16823445. S2CID 4383571.
  2. Ok SH, Jeong HJ, Bae JM, Shin JS, Luan S, Kim KN (September 2005). "Novel CIPK1-associated proteins in Arabidopsis contain an evolutionarily conserved C-terminal region that mediates nuclear localization". Plant Physiol. 139 (1): 138–50. doi:10.1104/pp.105.065649. PMC 1203364. PMID 16113215.
  3. Hartmann AM, Nayler O, Schwaiger FW, Obermeier A, Stamm S (November 1999). "The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59(fyn)". Mol. Biol. Cell. 10 (11): 3909–26. doi:10.1091/mbc.10.11.3909. PMC 25688. PMID 10564280.
  4. Stoilov P, Rafalska I, Stamm S (October 2002). "YTH: a new domain in nuclear proteins". Trends Biochem. Sci. 27 (10): 495–7. doi:10.1016/S0968-0004(02)02189-8. PMID 12368078.
This article incorporates text from the public domain Pfam and InterPro: IPR007275
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.