257-gono
En geometría, un 257-gono es un polígono de 257 lados. La suma de los ángulos interiores de cualquier 257-gon que no se cruce con él mismo es de 45.900°.
257-gono regular | ||
---|---|---|
Polígono regular de 257 lados | ||
Características | ||
Lados | 257 | |
Vértices | 257 | |
Grupo de simetría | Diedral , orden 2×257 | |
Símbolo de Schläfli | {257} | |
Diagrama de Coxeter-Dynkin | ||
Área | ||
Ángulo interior | ||
Propiedades | ||
Convexo, isogonal, cíclico | ||
257-gono regular
El área de un 257-gono regular es (con t = longitud de la arista):
Un 257-gono regular no es visualmente discernible de un círculo, y su perímetro difiere de su del círculo circunscrito por aproximadamente 24 partes por notación.
Construcción
El 257-gono regular (uno con todos los lados iguales y todos los ángulos iguales) es interesante porque es un polígono construible: es decir, que puede ser construido utilizando un compás y una regla. Esto es porque 257 es un número de Fermat, siendo de la forma 2^(2^n) + 1 (en este caso, de n = 3).
A pesar de que Gauss haya sabido que el 257-gono regular fuera construible, las primeras construcciones explícitas de este polígono fueron hechas por Magnus Georg Paucker en 1822[1] y Friedrich Julius Richelot en 1832.[2] Another method involves the use of 150 circles, 24 being Carlyle circles: this method is pictured below. One of these Carlyle circles solves the quadratic equation x2 + x − 64 = 0.[3] Otro método consiste en la construcción con 150 círculos, donde 24 de estos son círculos de Carlyle: se muestra debajo dicho método. Uno de estos círculos es de ecuación cuadrática x2 + x − 64 = 0.[3]
Simetría
El 257-gono regular posee simetría Dih257, de orden 514. Como 257 es un número primo , tiene un subgrupo con simetría diedra: Dih1, y 2 simetrías cíclicas de grupo: Z257, y Z1.
Véase también
Referencias
- Magnus Georg Paucker (1822). «Das regelmäßige Zweyhundersiebenundfunfzig-Eck im Kreise.». Jahresverhandlungen der Kurländischen Gesellschaft für Literatur und Kunst (en alemán) 2: 188. Retrieved 8. December 2015.
- Friedrich Julius Richelot (1832). «De resolutione algebraica aequationis x257 = 1, ...». Journal für die reine und angewandte Mathematik (en latín) 9: 1-26, 146-161, 209-230, 337-358. Retrieved 8. December 2015.
- DeTemple, Duane W. (Feb 1991). «Carlyle circles and Lemoine simplicity of polygon constructions». The American Mathematical Monthly 98 (2): 97-108. JSTOR 2323939. doi:10.2307/2323939. Archivado desde el original el 21 de diciembre de 2015. Consultado el 6 de noviembre de 2011.