Compuesto de cubo y octaedro

El compuesto de cubo y octaedro puede verse como la estelación de un poliedro o como un poliedro compuesto.[1]

Compuesto de cubo y octaedro
TipoCompuesto
Diagrama de Coxeter-Dynkin
Núcleo de la estelaciónCuboctaedro
Envolvente convexaRombododecaedro
ÍndiceW43
Poliedros1 octaedro
1 cubo
Caras8 triángulos
6 cuadrados
Aristas24
Vértices14
Grupo de simetríaOctaédrico (Oh)

Construcción

Las 14 coordenadas cartesianas de los vértices del compuesto son:

6: (±2, 0, 0), ( 0, ±2, 0), ( 0, 0, ±2)
8: (±1, ±1, ±1)

Como un compuesto

Puede verse como el compuesto de un octaedro y de un cubo. Es uno de los cuatro compuestos construidos a partir de un sólido platónico o de un sólido de Kepler-Poinsot y su dual.

Tiene simetría octaédrica (Oh) y comparte los mismos vértices que un rombododecaedro.

Esto puede verse como el equivalente tridimensional del "octagrama", el compuesto de dos cuadrados ({8/2}); esta serie continúa hasta el infinito, siendo el equivalente en cuatro dimensiones el compuesto de teseracto y 16-celdas.

Un cubo y su octaedro dual
La intersección de ambos sólidos es el cuboctaedro, y su envolvente convexa es el rombododecaedro.
Visto desde los ejes de simetría de 2, 3 y 4 lóbulos
El hexágono del medio es el polígono de Petrie de ambos sólidos.
Si los cruces de aristas fueran vértices, su poliedro esférico sería el mismo que el de un icositetraedro deltoidal.

Como una estelación

También es la primera estelación del cuboctaedro, y como tal figura en el índice de modelos de Wenninger con el número 43.

Se puede ver como un cuboctaedro con pirámides agregadas a cada cara triangular.

Las caras de la estelación para construir la figura son:

Véase también

Referencias

  1. Wenninger, Magnus (1974). Polyhedron Models. Cambridge University Press. ISBN 978-0-521-09859-5.
Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.