Teorema de Seifert-van Kampen

En matemáticas, concretamente en topología algebraica, el teorema de Seifertvan Kampen, a veces conocido simplemente como el teorema de van Kampen, expresa la estructura del grupo fundamental de un espacio topológico X respecto de los grupos fundamentales de dos subespacios abiertos y conexos por caminos U y V que recubren X. Se puede emplear por tanto para obtener el grupo fundamental de espacios construibles a partir de espacios más sencillos.

Enunciado

Sea un espacio topológico, , con subconjuntos abiertos y conexos por caminos, tales que también es conexo por caminos. Sea .

Supongamos que conocemos los grupos fundamentales

,
y
.

Entonces, , donde,
si y son las inclusiones naturales,
entonces y son las aplicaciones inducidas tales que

que actúa ,

y análogamente

que actúa .

Véase también

Referencias

    Bibliografía

    Enlaces externos

    Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.