Absorptivité molaire

L'absorptivité molaire[1], également appelée coefficient d'extinction molaire ou coefficient d'absorption molaire[2], caractérise les capacités d'une solution à absorber la lumière. La loi de Beer-Lambert stipule qu'elle ne dépend pas de la concentration de la solution ni de l'épaisseur traversée par la lumière ; en revanche elle dépend de la nature du soluté et du solvant (souvent l'eau), de la longueur d'onde de la lumière incidente et de la température.

Absorptivité molaire
La perte d'intensité d'un faisceau lumineux de longueur d'onde donnée dépend de la nature du soluté, de sa concentration molaire et de l'épaisseur traversée.
Dimension L2·N−1
Nature Grandeur scalaire intensive
Symbole usuel
Lien à d'autres grandeurs =

Définition et unités

L'absorptivité molaire, notée ε, est définie par :

 :

  • est l'absorbance (ou densité optique) de la solution considérée (pour une longueur d'onde donnée), définie par est l'intensité énergétique de la lumière incidente et celle de la lumière transmise ;
  • la concentration molaire de la solution ;
  • la longueur du trajet optique, c'est-à-dire l'épaisseur de solution traversée par la lumière.

L'absorbance est sans dimension. Dans le Système international d'unités la concentration molaire s'exprime en mol/m3 et l'épaisseur en mètres, donc l'absorptivité molaire en m2/mol. Les biochimistes expriment plutôt la concentration molaire en mol/L et l'épaisseur en centimètres, donc l'absorptivité molaire en L mol−1 cm−1.

Valeurs

Quelques valeurs de l'absorptivité molaire (en solution aqueuse) :

Composé
nm

L mol−1 cm−1
Tartrazine42523 000[3]
Bleu patenté V63098 500[3]
Co(H2O)62+5105[4]
CoCl42−690615[4]
paranitrophénol (pH =12)40020 000[5]
I34154 360[3]
MnO45252 250[3]
MnO45202 120[6]
Cu(H2O)62+81012[7]
Cu(EDTA)2−73585[7]
Cu(H2O)2(en)22+54564[7]
Cu(NH3)42+62056[6]
Chlorophylle A428111 000[8]
Br2398160[8]
I2520900[8]

Notes et références

  1. (en) « molar absorptivity », IUPAC, Compendium of Chemical Terminology Gold Book »], Oxford, Blackwell Scientific Publications, 1997, version corrigée en ligne :  (2019-), 2e éd. (ISBN 0-9678550-9-8)
  2. (en) « absorption coefficient », IUPAC, Compendium of Chemical Terminology Gold Book »], Oxford, Blackwell Scientific Publications, 1997, version corrigée en ligne :  (2019-), 2e éd. (ISBN 0-9678550-9-8)
  3. Jacques Mesplède et Jérôme Randon, 100 manipulations de chimie générale et analytique, Bréal, (ISBN 2-7495-0351-5)
  4. (en) Lavabre, Micheau et Levy, « Comparison of Thermochromic Equilibria of Co(ll) and Ni(ll) Complexes », Journal of Chemical Education, vol. 65, no 3, , p. 274
  5. René Meyer et Colette Denier, « Spectroscopie pratique dans le domaine du visible et de l’ultraviolet », Bulletin de l'union des physiciens ( BUP), no 784, , p. 895
  6. Danielle Cachau-Herreillat, Des expériences de la famille réd-ox : réussir, exploiter et commenter 55 manipulations de chimie, De Boeck, (ISBN 2-8041-5213-8)
  7. (en) Anthony T. Baker, « The Ligand Field Spectra of Copper(II) Complexes », Journal of Chemical Education, vol. 75, no 1, , p. 98
  8. (en) Linda B. Light, Jay S. Huebner et Robert A. Vergenz, « How Does Light Absorption Intensity Depend on Molecular Size? », Journal of Chemical Education, vol. 71, no 2, , p. 105

Voir aussi

  • Portail de la chimie
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.