Almageste

L’Almageste (arabisation du grec ancien Μεγίστη / mégistè signifiant la plus grande ou la très grande) est une œuvre de Claude Ptolémée datant du IIe siècle. Elle constitue la somme des connaissances les plus avancées de l'Antiquité en mathématiques et en astronomie.

Ptolémée : portrait allégorique de la Renaissance.

Le titre original était Μαθηματική σύνταξις (Mathématikế sýntaxis), Composition mathématique. Il devint ensuite Ἡ Μεγάλη Σύνταξις, La grande Composition, puis Ἡ μεγίστη, La très grande, arabisé en al-Mijisti, et transcrit ultérieurement en français sous le nom d'Almageste.

Histoire

Le modèle de Ptolémée est mentionné dans une inscription de Canope de 147 ou 148. En s'appuyant sur celle-ci, on datait traditionnellement la rédaction de l'Almageste. L'historien N. T. Hamilton a montré[1] que cette inscription fait référence à un état du modèle antérieur à celui de l'Almageste, qui n'a pas pu être rédigé, selon lui, avant 150.

Les premières traductions en arabe datent du IXe siècle. À cette époque, bien qu'il soit encore présent à Byzance, cet ouvrage est perdu en Europe occidentale, où les cercles astrologiques en conservent quelques vagues souvenirs. Une première traduction du grec en latin est effectuée par Henri Aristippe de Catane, au service de Roger II de Sicile vers 1160. Elle fait connaître en premier le texte de Ptolémée en Europe occidentale.

Au XIIe siècle, apparaît une version en espagnol, plus tard traduite en latin, sous le patronage de l'empereur Frédéric II.

Une autre version, en latin cette fois-ci et provenant directement de l'arabe, est réalisée par Gérard de Crémone à partir d'un texte provenant de Tolède, en Espagne. Incapable de traduire de nombreux termes techniques, il conserve même le nom arabe Abrachir pour Hipparque.

Au XVe siècle, une version grecque, venue de Byzance[2], apparaît en Europe occidentale. Johannes Müller, mieux connu sous le nom de Regiomontanus, en fournit une version abrégée en latin, à l'instigation du cardinal Johannes Bessarion. Au même moment, une traduction complète est réalisée par Georges de Trébizonde, incluant un commentaire aussi long que l'original. Ce travail de traduction, effectué sous le patronage du pape Nicolas V, destiné à supplanter l'ancienne traduction, et apportant une grande amélioration. Mais le commentaire est beaucoup moins apprécié et fortement critiqué. Le pape refuse de dédicacer l'ouvrage et la version de Régiomontanus prédomine durant le siècle suivant et encore au-delà.

La première édition critique est réalisée par Érasme au XVIe siècle.

Des commentaires sur l'Almageste ont été écrits notamment par Théon d'Alexandrie (complets), Pappus d'Alexandrie (fragments) et Ammonius (perdus).

Contenu

Image de la traduction latine de Georges de Trébizonde (v. 1451).

Ptolémée y propose une théorie géométrique pour décrire les mouvements des planètes, de la Lune et du Soleil. Cette théorie des épicycles et les tables astronomiques qui l'accompagnent sont un développement de l'œuvre d'Hipparque. Elles resteront la référence pendant de nombreux siècles dans les mondes occidentaux et arabes. L'Univers y est conçu comme géocentrique, ce qui a livré l'ouvrage à l'oubli à la fin de la Renaissance, quand le modèle héliocentrique de Copernic, Kepler et Galilée a fini par s'imposer malgré les réticences de l'Église.

L'œuvre est constituée de treize livres :

  • Livre I. Postulats fondamentaux de l'astronomie ; théorie des calculs des arcs sur la sphère ; tables trigonométriques[3] ; mesure de l'obliquité de l'écliptique ; tables de déclinaison et d'ascension droite pour les points de l'écliptique.
  • Livre II. Théorie des climats ; tables d'ascension oblique ; détermination des heures temporaires.
  • Livre III. Définition de l'année solaire ; Détermination de sa durée ; Tables du mouvement moyen ; Anomalie du Soleil ; Tables ; Distinction du temps vrai et du temps moyen.
  • Livre IV. Périodes lunaires, détermination des mouvements lunaires moyens ; l'anomalie et les nœuds ; Tables.
  • Livre V. Seconde anomalie ou prosneuse (évection)[4]. Corrections de parallaxes pour le Soleil et la Lune ; Tables.
  • Livre VI. Diamètres apparents du Soleil et de la Lune ; Calcul des éclipses ; Tables.
  • Livre VII. Précession des équinoxes ; Catalogue des étoiles boréales.
  • Livre VIII. Catalogue de 1 022 étoiles et 48 constellations ; Levers et couchers des fixes.
  • Livre IX. Préliminaires de la théorie des planètes ; Mercure.
  • Livre X. Théorie de Vénus et de Mars.
  • Livre XI. Théorie de Jupiter et de Saturne.
  • Livre XII. Calcul des rétrogradations, stations et digressions maximées.
  • Livre XIII. Mouvement des planètes en latitude ; prévision de leurs phases d'apparition et de disparition.

Éditions modernes

La première édition (et dernière à ce jour) avec traduction française est celle de l'abbé Nicolas Halma, publiée en deux volumes en 1813 et 1816[5], réimprimée en 1927 (Hermann, Paris).

En langue anglaise : G. J. Toomer, Ptolemy's Almagest, Princeton University Press, 1998 (ISBN 0-691-00260-6). La traduction la plus récente est de B. M. Perry, de St. John's College, Annapolis, Maryland, États-Unis.

Notes et références

  1. (en) N. T. Hamilton, N. M. Swerdlow et G. J. Toomer, « The Canobic Inscription: Ptolemy's Earliest Work », dans J. L. Berggren et B. R. Goldstein, eds., From Ancient Omens to Statistical Mechanics,
  2. Voir Sciences et techniques dans l'Empire byzantin, transmission vers l'Occident.
  3. Pour dresser ses tables, Ptolémée utilise un résultat géométrique désigné aujourd'hui sous le nom de théorème de Ptolémée.
  4. Cette partie est considérée par Halma comme l'apport essentiel de Ptolémée (Halma, préface de l'édition de l'Almageste).
  5. En ligne sur Gallica, tome 1 et tome 2 (texte grec et traduction de l'abbé Halma)

Voir aussi

Articles connexes

Liens externes

  • Portail de l’astronomie
  • Portail de la Grèce antique
  • Portail des mathématiques
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.