Constante d'Erdős-Borwein

La constante d'Erdős-Borwein est la somme E des inverses des nombres de Mersenne (non nécessairement premiers) :

[1].

On peut démontrer que la première égalité ci-dessus équivaut à chacune des suivantes :

où σ0 = d est la fonction nombre de diviseurs, une fonction multiplicative donnant le nombre de diviseurs positifs du nombre de départ. Pour démontrer que ces sommes sont égales, notons qu'elles prennent toutes la forme d'une série de Lambert et peuvent ainsi être resommées comme telles.

Paul Erdős a démontré en 1948 que E est un nombre irrationnel[2]. En 1991, Peter Borwein a montré[3] que plus généralement, pour tout entier relatif q et tout rationnel non nul r, dès que la série converge, c'est-à-dire q différent de 0 et ±1 et r non puissance de q.

Notes et références

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Erdős–Borwein constant » (voir la liste des auteurs).
  1. Pour plus de décimales, voir la suite A065442 de l'OEIS.
  2. (en) P. Erdős, « On arithmetical properties of Lambert series », J. Indian Math. Soc., vol. 12, , p. 63–66 (lire en ligne).
  3. (en) Eric W. Weisstein, « Erdős-Borwein Constant », sur MathWorld.

Article connexe

Série de Kempner (en base 2, en évitant le chiffre 0)

  • Arithmétique et théorie des nombres
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.