Fonction lorentzienne

Une fonction lorentzienne, ou courbe lorentzienne — du nom de Hendrik Lorentz — est une fonction de la forme suivante :

.

Pour l’article homonyme, voir Courbe de Lorenz.

Fonction lorentzienne pour x0 = 0, Γ = 1

C'est l'expression la plus simple d'une lorentzienne, centrée en x=0.

Une forme paramétrée par l'abscisse x0 du sommet et la largeur Γ à mi-hauteur (couramment appelée largeur de la lorentzienne) est la fonction L définie par :

En son sommet, elle atteint :

C'est une courbe en cloche.

En théorie des probabilités, elle est la densité de probabilité de la loi appelée loi de Cauchy (à un préfacteur de normalisation près).

Transformée de Fourier

Sa transformée de Fourier est[1]

.

Applications

En spectrométrie d'émission ou d'absorption, une raie correspond à l'énergie de transition entre deux niveaux d'énergie. Le spectre devrait donc présenter une bande de fréquence (ou d'énergie) infiniment mince (signal monochromatique). Dans les faits, cette raie a une certaine largeur. Dans le cas d'un gaz, une fonction lorentzienne permet de modéliser la largeur de cette raie (dans un spectre en fréquences) en raison des collisions entre les molécules (élargissement lorentzien) : l'élargissement de la raie est dû à un raccourcissement de la durée d'émission induit par les chocs.

En diffractométrie de rayons X, une fonction lorentzienne permet de décrire le profil des pics de diffraction si l'on considère un effet de taille de cristallites (loi de Scherrer).

Dans les bruits électroniques basse fréquence, le bruit de génération-recombinaison (bruit GR) suit une loi lorentzienne.

Notes et références

  1. Pour une démonstration, voir par exemple cette feuille d'exercices corrigés (exercice 1 question 6, ou exercice 4 question 2).

Voir aussi

Articles connexes

Liens externes

  • Portail de l'analyse
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.