Développée
En géométrie, la développée d'une courbe plane est le lieu de ses centres de courbure. On peut aussi la décrire comme l'enveloppe de la famille des droites normales à la courbe.
On suppose la courbe suffisamment dérivable et birégulière. Si elle est paramétrée par l'abscisse curviligne sous la forme , le centre de courbure s'obtient en posant
où est le centre de courbure, la courbure et le vecteur normal au point .
Le vecteur dérivé de la développée est
en utilisant les formules de Frenet. On vérifie ainsi que :
- les points stationnaires de la développée g correspondent aux points où la dérivée de la courbure de f s'annule, en particulier les sommets de f (points de courbure extrémale) ;
- entre deux tels points, la tangente à la développée g au point de paramètre s est la normale à la courbe f.
Voir aussi
Articles connexes
- Courbe développante
- Développante du cercle
- Radiale d'une courbe
Liens externes
- « Développée d'une courbe », sur mathcurve.com
- « Radiale d'une courbe », sur mathcurve.com
- Portail de la géométrie
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.