Graphe dodécaédrique adouci

Le graphe dodécaédrique adouci est, en théorie des graphes, un graphe 5-régulier possédant 60 sommets et 150 arêtes.

Graphe dodécaédrique adouci
Nombre de sommets 60
Nombre d'arêtes 150
Distribution des degrés 5-régulier
Rayon 7
Diamètre 7
Maille 3
Automorphismes 60
Nombre chromatique 4
Indice chromatique 5
Propriétés Hamiltonien
Planaire
Régulier
Sommet-transitif

Construction

Il existe treize graphes correspondant aux squelettes des treize solides d'Archimède. Le graphe graphe dodécaédrique adouci est celui associé au dodécaèdre adouci, un solide à 92 faces ayant deux formes distinctes énantiomorphes.

Les douze autres graphes squelettes d'Archimède sont le graphe tétraédrique tronqué, le graphe hexaédrique tronqué, le graphe octaédrique tronqué, le graphe dodécaédrique tronqué, le graphe icosaédrique tronqué, le graphe cuboctaédrique, le graphe cuboctaédrique adouci, le graphe icosidodécaédrique, le graphe rhombicuboctaédrique, le graphe cuboctaédrique tronqué, le graphe rhombicosidodécaédrique et le graphe icosidodécaédrique tronqué.

Propriétés

Propriétés générales

Le diamètre du graphe dodécaédrique adouci, l'excentricité maximale de ses sommets, est 7, son rayon, l'excentricité minimale de ses sommets, est 7 et sa maille, la longueur de son plus court cycle, est 3. Il s'agit d'un graphe 5-sommet-connexe et d'un graphe 5-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté il faut le priver au minimum de 5 sommets ou de 5 arêtes.

Coloration

Le nombre chromatique du graphe dodécaédrique adouci est 4. C'est-à-dire qu'il est possible de le colorer avec 4 couleurs de telle façon que deux sommets reliés par une arête soient toujours de couleurs différentes. Ce nombre est minimal.

L'indice chromatique du graphe dodécaédrique adouci est 5. Il existe donc une 5-coloration des arêtes du graphe telle que deux arêtes incidentes à un même sommet soient toujours de couleurs différentes. Ce nombre est minimal.

Propriétés algébriques

Le groupe d'automorphismes du graphe dodécaédrique adouci est un groupe d'ordre 60.

Le polynôme caractéristique de la matrice d'adjacence du graphe dodécaédrique adouci est : .

Voir aussi

Liens internes

Liens externes

Références

    • Portail des mathématiques
    Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.