Graphe sommet-transitif

En théorie des graphes, un graphe non-orienté est sommet-transitif si pour tout couple de sommets, il existe un automorphisme de graphe qui envoie le premier sommet sur le deuxième. De manière informelle cette propriété indique que tous les sommets jouent exactement le même rôle à l'intérieur du graphe.

Familles de graphes définies par leurs automorphismes
distance-transitif distance-régulier fortement régulier
symétrique (arc-transitif) t-transitif, (t  2) symétrique gauche (en)
(si connexe)
sommet-transitif et arête-transitif
régulier et arête-transitif arête-transitif
sommet-transitif régulier (si biparti)
birégulier
graphe de Cayley zéro-symétrique asymétrique

Définitions

Un graphe est sommet-transitif si pour tout couple de sommets, il existe un automorphisme de graphe qui envoie le premier sommet sur le deuxième[1]. En d'autres termes, un graphe est sommet-transitif si son groupe d'automorphismes agit transitivement sur l'ensemble de ses sommets.

Propriétés

Un graphe sommet-transitif est régulier[1], mais la réciproque n'est pas nécessairement vraie[2].

Exemples

Les graphes complets sont sommet-transitifs. Les graphes symétriques sans sommets isolés et les graphes de Cayley, sont sommet-transitifs.

Notes et références

  1. Olivier Fouquet, Théorie des graphes : une brève introduction (avec un biais algébrique assumé), (lire en ligne)
  2. (en) Eric W. Weisstein, « Vertex-Transitive Graph », sur MathWorld.
  • Portail des mathématiques
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.