Méthode des moments d'aires

La méthode des « moments d'aires » concerne la déformation des poutres en flexion, et permet de calculer la pente et la flèche d'une poutre.

La méthode des moments d'aires est une méthode par intégration géométrique permettant de calculer la déformée d'une poutre en la reliant à un diagramme M/EI.

La méthode des moments d'aire

Considérons une poutre rectiligne. Après déformation, sa courbe moyenne a pour équation

,

uy(x) étant la flèche à l'abscisse x considérée. La pente φ est la dérivée de cette courbe :

.

Le rayon de courbure ρ vérifie

.

La théorie des poutres nous donne

On a donc :

La variation de pente entre deux points A et B de la poutre s'écrit :

Cela représente l'aire, comprise entre xA et xB, sous la courbe Mfz/EIGz :

.

Les théorèmes de la méthode des moments d'aire

La méthode des moments d'aires est basée sur deux théorèmes dits théorèmes des moments d'aires.

Voir aussi

  • Portail du génie mécanique
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.