Configuration électronique

En physique des particules comme en chimie quantique, la configuration électronique, également appelée structure électronique ou formule électronique, décrit la distribution des électrons d'un atome, d'une molécule ou d'une espèce chimique dans un ensemble de fonctions d'onde correspondant à des orbitales atomiques ou à des orbitales moléculaires[1]. Par exemple, la configuration électronique à l'état fondamental d'un atome d'oxygène est 1s2 2s2 2p4, tandis que celle d'une molécule de dioxygène O2 est 2
g
2
u
2
g
2
u
4
u
2
g
2
g
, d'où, en spectroscopie, les multiplets 3Σ
g
, 1Δ
g
et 1Σ+
g
.

Planche synthétisant la règle de Klechkowski (en haut à gauche) de remplissage des sous-couches électroniques ; en haut la géométrie des quatre types d'orbitales atomiques ; au centre la géométrie de quelques orbitales moléculaires ; en bas le nombre maximum d'électrons pouvant occuper les 19 orbitales atomiques connues à l'état fondamental.

Une configuration électronique est entièrement déterminée par la connaissance des spinorbitales de chaque électron, c'est-à-dire la connaissance de leur orbitale et de leur spin. Ces configurations décrivent chaque électron comme se déplaçant dans une orbitale de manière indépendante dans un champ moyen généré par les autres orbitales. D'un point de vue mathématique, elles sont calculées à l'aide de déterminants de Slater ou de fonctions d'état de configuration.

Conséquence des lois de la mécanique quantique, une énergie est associée à chaque configuration électronique. Dans certaines conditions, les électrons peuvent passer d'une configuration à une autre moyennant l'émission ou l'absorption d'un quantum d'énergie sous la forme d'un photon.

La connaissance des configurations électroniques permet de comprendre la construction du tableau périodique des éléments. Elle permet également de décrire la liaison chimique dans les molécules, et d'expliquer certaines propriétés des matériaux, comme la liaison métallique, les lasers ou encore la nature des semiconducteurs.

Éléments théoriques

Fonctions d'onde et spinorbitales

Chaque électron d'une configuration électronique donnée est entièrement décrit par une spinorbitale , produit d'une fonction d'espace (orbitale) par une fonction de spin , la valeur propre de cette dernière pouvant valoir ou . La fonction d'onde d'un système à n électrons peut être vue comme le produit des n spinorbitales de ces électrons individuels (produit de Hartree) :

.

Configurations électroniques et niveaux d'énergie

Configuration électronique

Chaque configuration électronique est associée à un niveau d'énergie, qui résulte à la fois de l'énergie des électrons sur chaque spinorbitale et des énergies d'interaction entre ces électrons, comme les interactions d'échange provenant de la répulsion entre électrons. Un même atome ou une même molécule peuvent présenter plusieurs configurations électroniques, et donc plusieurs états d'énergie. L'état de plus basse énergie est dit état fondamental, tous les autres étant qualifiés d'états excités. Le remplissage des spinorbitales à l'état fondamental se fait par niveau d'énergie croissant et, en cas d'égalité entre niveaux d'énergie de spinorbitales différentes, en remplissant d'abord celle de spin + 1/2 avant de peupler celles de spin 1/2 (règle de Hund).

Multiplicité de spin

La somme des spins de chaque électron donne le spin total S de la configuration. Ce nombre donne directement la multiplicité de spin associé à cette dernière, qui vaut 2S + 1 et en représente le nombre de « micro-états ». Ceux-ci sont caractérisés par la même énergie mais peuvent être discernés par certaines spectroscopies :

  • une configuration à deux électrons appariés conduit à un seul micro-état, dit singulet car il n'y a qu'une seule façon de placer deux électrons dans la même orbitale ;
  • une configuration à un électron célibataire conduit à un état doublet car il existe deux micro-états : celui où le spin est vers le haut (ms = + 1/2), et celui où le spin est vers le bas (ms = – 1/2) ;
  • une configuration à deux électrons célibataires correspond à un état singulet si leurs spins sont opposés, et à un état triplet si leurs spins sont parallèles.

Application aux atomes

Dans le modèle quantique d'un atome ou d'une molécule, les électrons ne gravitent pas autour des noyaux atomiques comme dans le modèle planétaire de Rutherford ou le modèle de Niels Bohr, mais se répartissent dans un volume autour de ces noyaux de manière probabiliste. Cette probabilité est évaluée par la fonction d'onde associée à l'électron et se matérialise sous la forme d'une orbitale atomique ou d'une orbitale moléculaire selon qu'on considère un atome isolé ou une molécule.

Nombres quantiques

Dans un atome — la situation est plus complexe dans une molécule ou dans un cristal — l'état quantique d'un électron est entièrement décrit par quatre nombres quantiques :

Couches, sous-couches et orbitales

Orbitales des sous-couches 1s, 2s et 2p.
s ( = 0) p ( = 1)
m = 0 m = 0 m = ±1
s pz px py
n = 1
n = 2

Les termes couche, sous-couche et orbitale sont hérités du modèle de Bohr, qui faisait orbiter les électrons sur des trajectoires circulaires de rayon croissant en formant des couches successives autour du noyau atomique. Ils sont encore très largement employés bien que la réalité physique qu'ils décrivent relève de la mécanique quantique.

En vertu du principe d'exclusion de Pauli, deux électrons d'un même atome ne peuvent partager le même état quantique[2], ce qui signifie qu'au plus deux électrons de nombres quantiques de spin opposés peuvent occuper une même case quantique : lorsqu'un seul électron occupe une orbitale atomique, on parle d’électron célibataire ; lorsque deux électrons occupent une orbitale atomique, on parle d’électrons appariés.

À chaque couple (n, ) est associée une notation permettant de décrire le type de sous-couche correspondant :

  • = 0 : sous-couche de type s (pour sharp ou simple), notée ns et contenant au plus 2 électrons ;
  • = 1 : sous-couche de type p (pour principal), notée np et contenant au plus 6 électrons ;
  • = 2 : sous-couche de type d (pour diffuse), notée nd et contenant au plus 10 électrons ;
  • = 3 : sous-couche de type f (pour fine ou fundamental), notée nf et contenant au plus 14 électrons ;
  • = 4 : sous-couche de type g, notée ng et contenant au plus 18 électrons.

Les noms s, p, d et f de ces sous-couches proviennent d'un système de catégorisation à partir des raies spectrales fondé sur l'observation de leur structure fine, d'où les qualificatifs sharp, principal, diffuse et fundamental. Quand les quatre premiers types de sous-couches ont été décrits, ils furent associés à ces quatre types de raies spectrales. Les lettres suivant le type f sont définies en fonction de l'ordre alphabétique : g, h, i, etc.

Par construction, une couche électronique n peut contenir au plus 2n2 électrons[alpha 1], tandis qu'une sous-couche peut contenir au plus 2(2 + 1) électrons, répartis entre les différentes orbitales atomiques m de la façon suivante :

Dénombrement des électrons par sous-couches des cinq premières couches électroniques
Nombres quantiques Sous-couche Nombre quantique magnétique m Nombre d'électrons
Principal Azimutal -4 -3 -2 -1 0 1 2 3 4 Sous-couche Couche
n = 1 = 0 1s     ↑ ↓     2 2
n = 2 = 0 2s     ↑ ↓     2 8
= 1 2p    ↑ ↓↑ ↓↑ ↓    6
n = 3 = 0 3s     ↑ ↓     2 18
= 1 3p    ↑ ↓↑ ↓↑ ↓    6
= 2 3d   ↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓   10
n = 4 = 0 4s     ↑ ↓     2 32
= 1 4p    ↑ ↓↑ ↓↑ ↓    6
= 2 4d   ↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓   10
= 3 4f  ↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓  14
n = 5 = 0 5s     ↑ ↓     2 50
= 1 5p    ↑ ↓↑ ↓↑ ↓    6
= 2 5d   ↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓   10
= 3 5f  ↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓  14
= 4 5g ↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓ 18

Règle de Klechkowski et règle de Hund

La distribution des électrons selon les différentes sous-couches électroniques à l'état fondamental privilégie l'occupation des orbitales atomiques de plus faible énergie. L'énergie d'un électron sur une orbitale peut être calculée à partir des nombres quantiques qui en définissent l'état quantique, en faisant notamment intervenir des déterminants de Slater. En première approche, cette énergie est déterminée par le couple (n, ) : elle croît avec la somme n + et, en cas d'égalité de cette somme entre couples différents, elle croît avec n. Cette règle, pressentie par Charles Janet en 1929, formulée par Erwin Madelung en 1936[3] et expliquée par Vsevolod Kletchkovski[4], est appelée pour cette raison règle de Klechkowski, et le principe qui en découle pour le remplissage des électrons entre sous-couches électroniques est appelé principe d'Aufbau, d'un mot allemand signifiant « édification ».

La règle de Klechkowski implique donc que les électrons occupent successivement les sous-couches d'un atome dans l'ordre suivant :

1s2s2p3s3p4s3d4p5s4d5p6s4f5d6p7s5f6d7p.

Cette règle découle cependant d'une approximation et doit être affinée afin de rendre compte des configurations électroniques observées. Environ un élément sur cinq présente en effet une distribution des électrons à l'état fondamental qui s'écarte légèrement de celle prédite par la simple application de la règle de Klechkowski. Cela provient du fait que les nombres quantiques n et ne sont pas seuls à prendre en compte pour déterminer l'énergie d'un électron sur une orbitale atomique. En particulier, une orbitale est d'autant plus stable que le nombre quantique magnétique de spin résultant des électrons qui l'occupent est élevé (règle de Hund). Il s'ensuit que, pour les éléments du bloc d et du bloc f (métaux de transition, lanthanides et actinides), il est énergétiquement moins favorable de suivre la règle de Klechkowski que de favoriser l'occupation impaire des sous-couches les plus externes lorsque la couche d ou f est vide, à moitié remplie ou entièrement remplie, car l'écart d'énergie entre ces sous-couches est inférieur au gain d'énergie induit par la redistribution des électrons maximisant leur nombre quantique magnétique de spin résultant.

Ionisation des éléments de transition

L'ordre dans lequel les électrons remplissent les orbitales atomiques n'est pas le même que l'ordre dans lequel les électrons sont arrachés des atomes pour former des cations. Ainsi, l'ordre des sous-couches affectées par l'ionisation décroissante d'un atome n'est pas l'inverse de l'ordre issu de la règle de Klechkowskin + croissant puis n croissant — mais suit un ordre dans lequel les nombres quantiques individuels sont croissants — n croissant puis croissant.

Par exemple, l'atome de titane Ti et l'ion de fer ionisé quatre fois Fe4+ ont tous deux 22 électrons mais présentent respectivement les configurations [Ar] 4s2 3d2 et [Ar] 3d4. Cela provient du fait que l'ordre relatif des niveaux d'énergie associés aux différentes orbitales ne dépend pas que de leurs nombres quantiques, mais également de la charge électrique du noyau atomique, qui vaut +22 dans le cas du titane mais +26 dans le cas du fer. L'ordre de remplissage des sous-couches d'un cation de moins en moins ionisé est donc :

1s2s2p3s3p3d4s4p4d4f → etc.

Notation

La configuration électronique peut se limiter à indiquer la répartition des électrons dans les couches K, L, M, etc. : si l'on considère les atomes non-ionisés (autant d'électrons que de protons) dans leur configuration électronique fondamentale, on note ainsi (K)1 pour l'atome d'hydrogène avec son unique électron ; (K)2 pour l'hélium avec 2 électrons, mais (K)2(L)1 pour le lithium, dont le 3eme électron, une fois pleine la première couche K, ne peut se placer que dans la 2eme couche, L.

Il est cependant bien plus courant de détailler la répartition des électrons dans les sous-couches : la couche K (n = 1) ne comportant que la seule sous-couche 1s (n = 1 & = 0), la configuration électronique fondamentale de l'atome d'hydrogène s'écrit maintenant 1s1, celle de l'hélium 1s2 ; celle du lithium, 1s2 2s1, précise que l'électron de la couche L occupe la sous-couche 2s, plutôt que la sous-couche 2p.

Cette notation devient vite fastidieuse quand on s'avance dans le tableau périodique : sous réserve que les électrons de cœur soient bien dans leur disposition fondamentale, on peut les noter de façon abrégée par le symbole, mis entre crochets, du gaz noble correspondant. Ainsi, la configuration électronique fondamentale de l'aluminium est 1s2 2s2 2p6 3s2 3p1, mais en remarquant que les 3 premiers termes, 1s2 2s2 2p6, décrivent la configuration électronique fondamentale du néon, on peut abréger la notation précédente en [Ne] 3s2 3p1, où seuls les trois électrons de valence apparaissent explicitement.

L'ordre dans lequel les sous-couches sont énumérées n'est pas fixé, et importe peu dans la mesure où c'est le nombre d'électrons par sous-couche qui importe. Ainsi, la configuration électronique du plomb peut-elle indifféremment être écrite [Xe] 6s2 4f14 5d10 6p2 par énergies croissantes, suivant la règle de Klechkowski pour les atomes électriquement neutres, ou [Xe] 4f14 5d10 6s2 6p2 par nombres quantiques n puis croissants, suivant l'ordre inverse d'ionisation pour former des cations, observé en spectroscopie.

Configuration électronique des 118 éléments chimiques

  1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H     He
2 Li Be   B C N O F Ne
3 Na Mg   Al Si P S Cl Ar
4 K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba * Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra *
*
Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
     
  * La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb  
  *
*
Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No  
 
  Bloc s Bloc f Bloc d Bloc p  
  Blocs du tableau périodique  

La construction du tableau périodique des éléments découle directement du principe d'Aufbau par application de la règle de Klechkowski. Les périodes du tableau sont telles qu'elles se terminent toujours par un élément chimique dont la couche de valence est saturée en électrons, tandis que la succession des sous-couches s, p, d et f définit les blocs homonymes (bloc s, bloc p, bloc d et bloc f).

La configuration électronique des 118 éléments reconnus par l'IUPAC est présentée dans le tableau ci-dessous. Elle peut être expliquée à la fois par la règle de Klechkowski faisant intervenir les nombres quantiques principal n et azimutal , et la règle de Hund faisant intervenir le nombre quantique magnétique de spin ms ; cette dernière implique que, pour les éléments du bloc d et du bloc f (métaux de transition, lanthanides et actinides), il est énergétiquement moins favorable de suivre la règle de Klechkowski que de favoriser l'occupation impaire des sous-couches les plus externes lorsque la sous-couche d ou f est vide, à moitié remplie ou entièrement remplie, car l'écart d'énergie entre ces sous-couches est inférieur au gain d'énergie induit par la redistribution des électrons maximisant leur nombre quantique magnétique de spin résultant (dans le tableau qui suit, les distributions d'électrons irrégulières sont indiquées en rouge et gras) :

Élément chimique Famille d'éléments Configuration électronique[5]
1 H Hydrogène Non-métal 1s1
2 He Hélium Gaz noble 1s2
3 Li Lithium Métal alcalin [He] 2s1
4 Be Béryllium Métal alcalino-terreux [He] 2s2
5 B Bore Métalloïde [He] 2s2 2p1
6 C Carbone Non-métal [He] 2s2 2p2
7 N Azote Non-métal [He] 2s2 2p3
8 O Oxygène Non-métal [He] 2s2 2p4
9 F Fluor Halogène [He] 2s2 2p5
10 Ne Néon Gaz noble [He] 2s2 2p6
11 Na Sodium Métal alcalin [Ne] 3s1
12 Mg Magnésium Métal alcalino-terreux [Ne] 3s2
13 Al Aluminium Métal pauvre [Ne] 3s2 3p1
14 Si Silicium Métalloïde [Ne] 3s2 3p2
15 P Phosphore Non-métal [Ne] 3s2 3p3
16 S Soufre Non-métal [Ne] 3s2 3p4
17 Cl Chlore Halogène [Ne] 3s2 3p5
18 Ar Argon Gaz noble [Ne] 3s2 3p6
19 K Potassium Métal alcalin [Ar] 4s1
20 Ca Calcium Métal alcalino-terreux [Ar] 4s2
21 Sc Scandium Métal de transition [Ar] 4s2 3d1
22 Ti Titane Métal de transition [Ar] 4s2 3d2
23 V Vanadium Métal de transition [Ar] 4s2 3d3
24 Cr Chrome Métal de transition [Ar] 4s1 3d5
25 Mn Manganèse Métal de transition [Ar] 4s2 3d5
26 Fe Fer Métal de transition [Ar] 4s2 3d6
27 Co Cobalt Métal de transition [Ar] 4s2 3d7
28 Ni Nickel Métal de transition [Ar] 4s2 3d8 ou 4s1 3d9[alpha 2]
29 Cu Cuivre Métal de transition [Ar] 4s1 3d10
30 Zn Zinc Métal pauvre [Ar] 4s2 3d10
31 Ga Gallium Métal pauvre [Ar] 4s2 3d10 4p1
32 Ge Germanium Métalloïde [Ar] 4s2 3d10 4p2
33 As Arsenic Métalloïde [Ar] 4s2 3d10 4p3
34 Se Sélénium Non-métal [Ar] 4s2 3d10 4p4
35 Br Brome Halogène [Ar] 4s2 3d10 4p5
36 Kr Krypton Gaz noble [Ar] 4s2 3d10 4p6
37 Rb Rubidium Métal alcalin [Kr] 5s1
38 Sr Strontium Métal alcalino-terreux [Kr] 5s2
39 Y Yttrium Métal de transition [Kr] 5s2 4d1
40 Zr Zirconium Métal de transition [Kr] 5s2 4d2
41 Nb Niobium Métal de transition [Kr] 5s1 4d4
42 Mo Molybdène Métal de transition [Kr] 5s1 4d5
43 Tc Technétium Métal de transition [Kr] 5s2 4d5
44 Ru Ruthénium Métal de transition [Kr] 5s1 4d7
45 Rh Rhodium Métal de transition [Kr] 5s1 4d8
46 Pd Palladium Métal de transition [Kr] 4d10
47 Ag Argent Métal de transition [Kr] 5s1 4d10
48 Cd Cadmium Métal pauvre [Kr] 5s2 4d10
49 In Indium Métal pauvre [Kr] 5s2 4d10 5p1
50 Sn Étain Métal pauvre [Kr] 5s2 4d10 5p2
51 Sb Antimoine Métalloïde [Kr] 5s2 4d10 5p3
52 Te Tellure Métalloïde [Kr] 5s2 4d10 5p4
53 I Iode Halogène [Kr] 5s2 4d10 5p5
54 Xe Xénon Gaz noble [Kr] 5s2 4d10 5p6
55 Cs Césium Métal alcalin [Xe] 6s1
56 Ba Baryum Métal alcalino-terreux [Xe] 6s2
57 La Lanthane Lanthanide [Xe] 6s2 5d1
58 Ce Cérium Lanthanide [Xe] 6s2 4f1 5d1
59 Pr Praséodyme Lanthanide [Xe] 6s2 4f3
60 Nd Néodyme Lanthanide [Xe] 6s2 4f4
61 Pm Prométhium Lanthanide [Xe] 6s2 4f5
62 Sm Samarium Lanthanide [Xe] 6s2 4f6
63 Eu Europium Lanthanide [Xe] 6s2 4f7
64 Gd Gadolinium Lanthanide [Xe] 6s2 4f7 5d1
65 Tb Terbium Lanthanide [Xe] 6s2 4f9
66 Dy Dysprosium Lanthanide [Xe] 6s2 4f10
67 Ho Holmium Lanthanide [Xe] 6s2 4f11
68 Er Erbium Lanthanide [Xe] 6s2 4f12
69 Tm Thulium Lanthanide [Xe] 6s2 4f13
70 Yb Ytterbium Lanthanide [Xe] 6s2 4f14
71 Lu Lutécium Lanthanide [Xe] 6s2 4f14 5d1
72 Hf Hafnium Métal de transition [Xe] 6s2 4f14 5d2
73 Ta Tantale Métal de transition [Xe] 6s2 4f14 5d3
74 W Tungstène Métal de transition [Xe] 6s2 4f14 5d4
75 Re Rhénium Métal de transition [Xe] 6s2 4f14 5d5
76 Os Osmium Métal de transition [Xe] 6s2 4f14 5d6
77 Ir Iridium Métal de transition [Xe] 6s2 4f14 5d7
78 Pt Platine Métal de transition [Xe] 6s1 4f14 5d9
79 Au Or Métal de transition [Xe] 6s1 4f14 5d10
80 Hg Mercure Métal pauvre [Xe] 6s2 4f14 5d10
81 Tl Thallium Métal pauvre [Xe] 6s2 4f14 5d10 6p1
82 Pb Plomb Métal pauvre [Xe] 6s2 4f14 5d10 6p2
83 Bi Bismuth Métal pauvre [Xe] 6s2 4f14 5d10 6p3
84 Po Polonium Métal pauvre [Xe] 6s2 4f14 5d10 6p4
85 At Astate Métalloïde [Xe] 6s2 4f14 5d10 6p5
86 Rn Radon Gaz noble [Xe] 6s2 4f14 5d10 6p6
87 Fr Francium Métal alcalin [Rn] 7s1
88 Ra Radium Métal alcalino-terreux [Rn] 7s2
89 Ac Actinium Actinide [Rn] 7s2 6d1
90 Th Thorium Actinide [Rn] 7s2 6d2
91 Pa Protactinium Actinide [Rn] 7s2 5f2 6d1
92 U Uranium Actinide [Rn] 7s2 5f3 6d1
93 Np Neptunium Actinide [Rn] 7s2 5f4 6d1
94 Pu Plutonium Actinide [Rn] 7s2 5f6
95 Am Américium Actinide [Rn] 7s2 5f7
96 Cm Curium Actinide [Rn] 7s2 5f7 6d1
97 Bk Berkélium Actinide [Rn] 7s2 5f9
98 Cf Californium Actinide [Rn] 7s2 5f10
99 Es Einsteinium Actinide [Rn] 7s2 5f11
100 Fm Fermium Actinide [Rn] 7s2 5f12
101 Md Mendélévium Actinide [Rn] 7s2 5f13
102 No Nobélium Actinide [Rn] 7s2 5f14
103 Lr Lawrencium Actinide [Rn] 7s2 5f14 7p1
104 Rf Rutherfordium Métal de transition [Rn] 7s2 5f14 6d2
105 Db Dubnium Métal de transition [Rn] 7s2 5f14 6d3
106 Sg Seaborgium Métal de transition [Rn] 7s2 5f14 6d4
107 Bh Bohrium Métal de transition [Rn] 7s2 5f14 6d5
108 Hs Hassium Métal de transition [Rn] 7s2 5f14 6d6
109 Mt Meitnerium Indéterminée [Rn] 7s2 5f14 6d7
110 Ds Darmstadtium Indéterminée [Rn] 7s2 5f14 6d8
111 Rg Roentgenium Indéterminée [Rn] 7s2 5f14 6d9
112 Cn Copernicium Métal de transition [Rn] 7s2 5f14 6d10
113 Nh Nihonium Indéterminée [Rn] 7s2 5f14 6d10 7p1
114 Fl Flérovium Indéterminée [Rn] 7s2 5f14 6d10 7p2
115 Mc Moscovium Indéterminée [Rn] 7s2 5f14 6d10 7p3
116 Lv Livermorium Indéterminée [Rn] 7s2 5f14 6d10 7p4
117 Ts Tennesse Indéterminée [Rn] 7s2 5f14 6d10 7p5
118 Og Oganesson Indéterminée [Rn] 7s2 5f14 6d10 7p6

Application aux molécules

Dans le cas des molécules, le calcul des orbitales moléculaires est plus complexe que dans le cas des atomes isolés. Plusieurs méthodes permettent d'établir ces orbitales, comme la combinaison linéaire d'orbitales atomiques, utilisées en chimie numérique pour calculer les structures et les propriétés des espèces chimiques à l'aide d'outils informatiques modélisant les lois de la chimie théorique.

La notation de la configuration électronique d'une molécule repose sur les symétries moléculaires σ, π, δ et φ, correspondant à celles des orbitales atomiques s, p, d et f. On parle ainsi de liaison σ, liaison π, liaison δ et liaison φ. Dans le cas des molécules centrosymétriques, un indice g ou u indique la parité de la liaison, de l'allemand gerade « pair » et ungerade « impair ». Le nombre d'électrons de l'orbitale moléculaire ainsi définie est indiqué en exposant.

Dans le cas de la molécule d'oxygène O2, la configuration électronique peut être écrite indifféremment 2
g
2
u
2
g
2
u
2
g
4
u
2
g
 [6],[7] ou 2
g
2
u
2
g
2
u
4
u
2
g
2
g
 [1].

Une autre représentation, employée pour les molécules diatomiques, fait intervenir le terme moléculaire noté 2S+1Λ(+/−)
Ω,(g/u)
, où S est le spin total, Λ la projection du moment cinétique orbital sur l'axe internucléaire (représentée par Σ, Π, Δ et Φ pour Λ valant 0, 1, 2 et 3), Ω la projection du moment cinétique total sur l'axe internucléaire, g/u l'indication d'une symétrie paire/impaire, et +/− la symétrie de réflexion autour d'un plan arbitraire contenant l'axe internucléaire.

Dans le cas de la molécule d'oxygène O2, les termes sont 3Σ
g
, 1Δ
g
et 1Σ+
g
.

Application aux cristaux

Dans un solide, les états électroniques deviennent très nombreux. Ils cessent d'être discrets, et se mélangent ensemble en une étendue continue d'états possibles, comme la bande de valence ou la bande de conduction. La notion de configuration électronique cesse d'être pertinente, et laisse la place à la théorie des bandes.

Notes et références

Notes

  1. Les couches O, P et Q (n = 5, 6 et 7) ne sont jamais totalement remplies. L'oganesson par exemple, l'élément connu de numéro atomique le plus élevé (Z = 118), ne comporte que 32 électrons sur la couche O, 18 sur la couche P et 8 sur la couche Q.
  2. Le cas du nickel est ambigu car il présente deux configurations électroniques d'énergies suffisamment proches pour se recouvrir : l'énergie la plus faible de la configuration régulière [Ar] 3d8 4s2 est inférieure à l'énergie la plus faible de la configuration irrégulière [Ar] 3d9 4s1, de sorte qu'elle est souvent retenue dans les manuels, d'autant qu'elle est étayée par les données expérimentales ; c'est cependant la configuration irrégulière qui présente l'énergie moyenne la plus faible des deux, de sorte qu'elle est également retenue pour les calculs sur le nickel.

Références

  1. (en) « configuration (electronic) », IUPAC, Compendium of Chemical Terminology Gold Book »], Oxford, Blackwell Scientific Publications, 1997, version corrigée en ligne :  (2019-), 2e éd. (ISBN 0-9678550-9-8)
  2. (en) « Pauli exclusion principle », IUPAC, Compendium of Chemical Terminology Gold Book »], Oxford, Blackwell Scientific Publications, 1997, version corrigée en ligne :  (2019-), 2e éd. (ISBN 0-9678550-9-8)
  3. (de) Erwin Madelung, Mathematische Hilfsmittel des Physikers, 1936, Springer, Berlin.
  4. (en) D. Pan Wong, « Theoretical justification of Madelung's rule », Journal of Chemical Education, vol. 56, no 11, , p. 714 (DOI 10.1021/ed056p714, Bibcode 1979JChEd..56..714W, lire en ligne)
  5. (en) CRC Handbook of Chemistry and Physics, section 1 : Basic Constants, Units, and Conversion Factors, sous-section : Electron Configuration of Neutral Atoms in the Ground State, 84e édition en ligne, CRC Press, Boca Raton, Floride, 2003.
  6. (en) I. N. Levine, Quantum Chemistry, 4e édition,Prentice Hall, 1991, p. 376. (ISBN 0-205-12770-3)
  7. (en) G. L. Miessler et D. A. Tarr, Inorganic Chemistry 2e édition, Prentice Hall, 1999, p. 118. (ISBN 0-13-841891-8)

Voir aussi

Liens externes

  • Portail de la chimie
  • Portail de la physique
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.