Arithmétique

L'arithmétique est une branche des mathématiques qui correspond à la science des nombres[1].

Pour le film de 1952, voir Arithmétique (film).

Illustration d’une décomposition arborescente d’un calcul arithmétique faisant intervenir l’addition (symbole +), la soustraction (symbole -), la multiplication (symbole *), le quotient (symbole /) et le reste de la division euclidienne (symbole %).

L'arithmétique s'est au départ limitée à l'étude des propriétés des entiers naturels, des entiers relatifs et des nombres rationnels (sous forme de fractions), et aux propriétés des opérations sur ces nombres. Les opérations arithmétiques traditionnelles sont l'addition, la division, la multiplication, et la soustraction. Cette discipline fut ensuite élargie par l'inclusion de l'étude d'autres nombres comme les réels (sous forme de développement décimal illimité), ou même de concepts plus avancés, comme l'exponentiation ou la racine carrée. Une arithmétique est une manière de représenter formellement - autrement dit, « coder » - les nombres (sous la forme d'une liste de chiffres, par exemple) ; et (grâce à cette représentation) définir les opérations de base : addition, multiplication, etc.

Histoire

Allégorie de l'arithmétique.

L'étymologie du mot arithmétique est basée sur le grec ancien ἀριθμός (arithmos), qui signifie nombre[2].

L’origine de l'arithmétique semble être une invention phénicienne[3]. Dans l'école pythagoricienne, à la deuxième moitié du VIe siècle av. J.-C., l'arithmétique était, avec la géométrie, l'astronomie et la musique, une des quatre sciences quantitatives ou mathématiques (Mathemata). Celles-ci furent regroupées au sein des sept arts libéraux par Martianus Capella (Ve siècle) et plus précisément désignées sous le nom de quadrivium par Boèce. Les trois autres disciplines étaient littéraires (grammaire, rhétorique, dialectique) et firent l'objet des travaux de Cassiodore et, plus tard, Alcuin qui leur donna le nom de trivium.

Différentes arithmétiques

Arithmétique élémentaire

L'expression « arithmétique élémentaire » désigne parfois la forme la plus basique des mathématiques, apprise à l’école élémentaire. Il s’agit essentiellement de l'étude des nombres et des opérations élémentaires (soustraction, addition, division, multiplication).

Ce terme désigne aussi les rudiments des techniques de l'arithmétique. Les outils utilisés sont la division euclidienne, le lemme d'Euclide, le théorème de Bachet-Bézout ou encore le théorème fondamental de l'arithmétique. Ils permettent de démontrer des théorèmes comme celui de Wilson ou encore le petit théorème de Fermat.

Cette deuxième acception du terme est traitée dans l'article détaillé.

Arithmétique modulaire

Carl Friedrich Gauss (1777-1855) étudie l'ensemble des classes de congruence des entiers relatifs modulo un entier donné. Chaque classe correspond à un reste de la division euclidienne par cet entier, et l'ensemble est naturellement muni d'une addition et d'une multiplication.

L'étude de cette structure porte le nom d'arithmétique modulaire. Elle permet de généraliser les résultats de l'arithmétique élémentaire. Le théorème d'Euler, correspondant à un résultat plus fort que celui du petit théorème de Fermat, illustre une généralisation.

L'arithmétique modulaire est utilisé en cryptologie ou pour la construction de codes correcteurs en informatique.

Théorie algébrique des nombres

De nombreuses questions ne trouvent pas de réponse, même avec les techniques de l'arithmétique modulaire. Des exemples proviennent d'équations diophantiennes, c'est-à-dire d'équations dont les coefficients sont entiers et dont les solutions recherchées sont entières. Une méthode consiste à élargir l'ensemble des entiers à une nouvelle structure qualifiée d'anneau d'entiers algébriques, comme celui des entiers de Gauss.

L'étude de ces structures, plus générales que celles de l'arithmétique modulaire qui se limite aux anneaux euclidiens, constitue le premier chapitre de la théorie algébrique des nombres.

Arithmétique des polynômes

L'étude de l'arithmétique, au sens des nombres entiers, suppose d'établir des théorèmes. Ces théorèmes se démontrent à l'aide de techniques qui ne se limitent pas aux nombres entiers. Il est possible de faire usage de la même démarche sur d'autres structures, comme celle des polynômes. À travers l'étude des polynômes cyclotomiques, Gauss parvient à trouver un nouveau polygone régulier constructible à la règle et au compas, de 17 côtés.

Sa démarche est de nature arithmétique, pour cette raison, on parle d'arithmétique des polynômes.

Ensembles utilisés en arithmétique

La totalité des nombres a été subdivisée en divers ensembles. Les plus connus sont :

  •  : l'ensemble des entiers naturels ().
  •  : l'ensemble des entiers relatifs ().
  •  : l'ensemble des nombres décimaux, c'est-à-dire qui s'écrivent sous la forme d'un quotient d'un nombre entier relatif et d'une puissance positive de 10, c'est-à-dire, x est un nombre entier relatif et n un nombre entier naturel (, etc.).
  •  : l'ensemble des nombres rationnels, c'est-à-dire des nombres pouvant s'écrire comme un quotient (résultat d'une division) de deux nombres entiers relatifs. En posant la division, il peut y avoir une infinité de chiffres après la virgule dans le résultat, mais ces chiffres finiront par se répéter ; dans ce cas on dit que l'écriture décimale est illimitée périodique .
  •  : l'ensemble des nombres réels, mesurant toutes les distances entre deux points d'une droite, pouvant se voir comme limites de nombres rationnels, et pouvant s'écrire avec des chiffres après la virgule mais les chiffres ne se répètent plus nécessairement (, , etc.).
  •  : nombres complexes de la forme où x et y sont réels et imaginaire tel que .

Certains de ces ensembles sont des sous-ensembles des autres ; tous les éléments de appartiennent aussi à , par exemple. Mais à l'inverse, un élément de n'est pas forcément élément de . On peut représenter ces ensembles par des cercles concentriques : le plus petit est , puis viennent , , , et .

Il est possible de ne considérer qu'une partie d'un ensemble. Ainsi, on note l'ensemble des nombres positifs de . De même on note l'ensemble privé de 0. On remarque entre autres que et que (il s'agit de « privé de » ).

Propriétés

De nombreux nombres entiers ont des propriétés particulières. Ces propriétés font l'objet de la théorie des nombres. Parmi ces nombres particuliers, les nombres premiers sont sans doute les plus importants.

Nombres premiers

C'est le cas des nombres dits premiers. Ce sont les entiers naturels possédant uniquement deux diviseurs positifs distincts, à savoir 1 et eux-mêmes. Les dix premiers nombres premiers sont 2, 3, 5, 7, 11, 13, 17, 19, 23 et 29. L'entier 1 n'est pas premier car il n'a pas deux diviseurs positifs distincts, mais un seul, à savoir lui-même. Il existe une infinité de nombres premiers. En complétant une grille de taille 10 × 10 avec les 100 premiers entiers naturels non nuls, et en rayant ceux qui ne sont pas premiers, on obtient les nombres premiers appartenant à {1, …, 100} par un procédé appelé un crible d'Ératosthène, du nom du savant grec qui l'inventa.

Nombres pairs et impairs

Les entiers naturels peuvent être divisés en deux catégories : les pairs et les impairs.

Un entier pair est un multiple de 2 et peut par conséquent s'écrire , avec . Un nombre impair n'est pas multiple de 2 et peut s'écrire , avec .

On montre que tout entier est soit pair soit impair, et ce pour un unique  : on note .

Les six premiers entiers pairs sont 0, 2, 4, 6, 8 et 10. Les six premiers entiers impairs sont 1, 3, 5, 7, 9 et 11.

Notes et références

  1. Dictionnaire encyclopédique Quillet, vol. A-D, p. 117.
  2. Hervé Lehning, Toutes les mathématiques du monde, Paris, Flammarion, , 446 p. (ISBN 978-2-08-135445-6, BNF 45340842), p. 135.
  3. Pascal Mueller-Jourdan, Une initiation à la philosophie de l'antiquité tardive : les leçons du Pseudo-Elias, Fribourg, Éditions du Cerf, , 143 p. (ISBN 978-2-204-08571-7, BNF 41210863, lire en ligne), p. 73.

Voir aussi

Mathématiques

Philosophie

Articles connexes

  • Arithmétique et théorie des nombres
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.