supremum

English

Etymology

Borrowed from Latin supremum.

Noun

supremum (plural suprema)

  1. (set theory) (real analysis): Given a subset X of R, the smallest real number that is ≥ every element of X; (order theory): given a subset X of a partially ordered set P (with partial order ≤), the least element y of P such that every element of X is ≤ y.
    • 2006, Charalambos D. Aliprantis, Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, Springer, 3rd Edition, page 8,
      A sublattice of a lattice is a subset that is closed under pairwise infima and suprema.
    • 2010, James S. Howland, Basic Real Analysis, Jones & Bartlett Publishers, page 9,
      The best way to describe the supremum of S is to say that it wants to be the greatest element of S. In fact, if S has a greatest element, then that element is the supremum.
    • 2011, Andreas Löhne, Vector Optimization with Infimum and Supremum, Springer, page vii,
      The key to an approach to vector optimization based on infimum and supremum is to consider set-based objective functions and to extend the partial ordering of the original objective space to a suitable subspace of the power set. In this new space the infimum and supremum exist under the usual assumptions.

Usage notes

  • Commonly denoted sup(X).
  • The supremum of X may not exist, and, if it does, may not be an element of X.
  • (order theory):
    • Formally: Let be the set of upper bounds of X. Then sup(X), if it exists, is the element .
    • The concept of supremum is closely related to the function (called join). The supremum of two elements, denoted can also be written . The supremum of a set may be denoted or .

Synonyms

  • (element of a set greater than or equal to all members of a given subset): least upper bound, LUB, sup

Coordinate terms

Translations

See also

Further reading

Anagrams


Czech

Noun

supremum n

  1. supremum (mathematics)

Antonyms


Finnish

Pronunciation

  • IPA(key): /ˈsupreːmum/, [ˈs̠upre̞ːmum]
  • Hyphenation: sup‧re‧mum

Noun

supremum

  1. (mathematics) supremum

Declension

Inflection of supremum (Kotus type 5/risti, no gradation)
nominative supremum supremumit
genitive supremumin supremumien
partitive supremumia supremumeja
illative supremumiin supremumeihin
singular plural
nominative supremum supremumit
accusative nom. supremum supremumit
gen. supremumin
genitive supremumin supremumien
partitive supremumia supremumeja
inessive supremumissa supremumeissa
elative supremumista supremumeista
illative supremumiin supremumeihin
adessive supremumilla supremumeilla
ablative supremumilta supremumeilta
allative supremumille supremumeille
essive supremumina supremumeina
translative supremumiksi supremumeiksi
instructive supremumein
abessive supremumitta supremumeitta
comitative supremumeineen

Synonyms

Antonyms


Latin

Adjective

suprēmum

  1. nominative neuter singular of suprēmus
  2. accusative masculine singular of suprēmus
  3. accusative neuter singular of suprēmus
  4. vocative neuter singular of suprēmus

References

  • supremum in Charlton T. Lewis (1891) An Elementary Latin Dictionary, New York: Harper & Brothers
  • supremum in Gaffiot, Félix (1934) Dictionnaire Illustré Latin-Français, Hachette
  • Carl Meissner; Henry William Auden (1894) Latin Phrase-Book, London: Macmillan and Co.
    • (ambiguous) to depart this life: mortem (diem supremum) obire
    • (ambiguous) on one's last day: supremo vitae die
    • (ambiguous) to perform the last rites for a person: supremo officio in aliquem fungi
    • (ambiguous) to perform the last offices of affection: supremis officiis aliquem prosequi (vid sect. VI. 11., note Prosequi...)
    • (ambiguous) the last wishes of a deceased person: alicuius mortui voluntas (suprema)

Swedish

Noun

supremum n

  1. (mathematics) supremum

Declension

Declension of supremum 
Singular Plural
Indefinite Definite Indefinite Definite
Nominative supremum supremumet supremum supremumen
Genitive supremums supremumets supremums supremumens
This article is issued from Wiktionary. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.