The subfields or branches of microbiology are diverse and many. Microbiology can be classified into pure and applied sciences. Microbiology can be also classified based on taxonomy, in the cases of bacteriology, mycology, protozoology, and phycology. There is considerable overlap between the specific branches of microbiology with each other and with other disciplines.
Pure microbiology: Organized in a taxonomic arrangement (i.e. the type of microbe being studied).
- Bacteriology: The study of bacteria.
- Mycology: The study of fungi.
- Protozoology: The study of protozoa.
- Phycology (or algology): The study of algae.
- Parasitology: The study of parasites.
- Immunology: The study of the immune system.
- Virology: The study of viruses.
- Nematology: The study of the nematodes
Integrative arrangement: Studies of microbes that integrate other fields of study.
- Microbial cytology: The study of microscopic and submicroscopic details of microorganisms.
- Microbial physiology: The study of how the microbial cell functions biochemically. Includes the study of microbial growth, microbial metabolism and microbial cell structure.
- Microbial ecology: The relationship between microorganisms and their environment.
- Microbial genetics: The study of how genes are organized and regulated in microbes in relation to their cellular functions. Closely related to the field of molecular biology.
- Cellular microbiology: A discipline bridging microbiology and cell biology.
Evolutionary microbiology: The study of the evolution of microbes. This field can be subdivided into:
- Microbial taxonomy: The naming and classification of microorganisms.
- Microbial systematics: The study of the diversity and genetic relationship of microorganisms.
- Generation microbiology: The study of those microorganisms that have the same characters as their parents.
- Systems microbiology: A discipline bridging systems biology and microbiology.
- Molecular microbiology: The study of the molecular principles of the physiological processes in microorganisms.
Applied microbiology:
- Medical microbiology: The study of the pathogenic microbes and the role of microbes in human illness. Includes the study of microbial pathogenesis and epidemiology and is related to the study of disease pathology and immunology.
- Pharmaceutical microbiology: The study of microorganisms that are related to the production of antibiotics, enzymes, vitamins,vaccines, and other pharmaceutical products and that cause pharmaceutical contamination and spoil.
- Industrial microbiology: The exploitation of microbes for use in industrial processes. Examples include industrial fermentation and waste water treatment. Closely linked to the biotechnology industry. This field also includes brewing, an important application of microbiology.
- Microbial biotechnology: The manipulation of microorganisms at the genetic and molecular level to generate useful products.
- Food microbiology and Dairy microbiology: The study of microorganisms causing food spoilage and foodborne illness. Using microorganisms to produce foods, for example by fermentation.
Agricultural microbiology: The study of agriculturally relevant microorganisms. This field can be further classified into the following:
- Plant microbiology and Plant pathology: The study of the interactions between microorganisms and plants and plant pathogens.
- Soil microbiology: The study of those microorganisms that are found in soil.
- Veterinary microbiology: The study of the role in microbes in veterinary medicine or animal taxonomy.
Environmental microbiology: The study of the function and diversity of microbes in their natural environments. This involves the characterization of key bacterial habitats such as the rhizosphere and phyllosphere, soil and groundwater ecosystems, open oceans or extreme environments (extremophiles). This field includes other branches of microbiology such as:
- Microbial ecology
- Microbially-mediated nutrient cycling
- Geomicrobiology
- Microbial diversity
- Bioremediation
- Water microbiology (or Aquatic microbiology): The study of those microorganisms that are found in water.
- Aeromicrobiology (or Air microbiology): The study of airborne microorganisms.
Other
- Nano microbiology: The study of those microorganisms on nano level.
- Exo microbiology (or Astro microbiology): The study of microorganisms in outer space.
- Weapon microbiology: The study of those microorganisms which are being used in weapon industries.
As microbes inhabit virtually every environmental niche in and on the planet earth there are an incredibly diverse set of tools that are used to study microbes. As well owing to the importance of microbes for human life and the role microbes can play as human pathogens, it should be no surprise that so many scientific disciplines deal with microbes .
Microbiologist's Fridge
While the fields of microbiology of very diverse, this fridge would serve as a typical example of many a microbiologist's fridge, even with very different fields of study.