Skip directly to search Skip directly to A to Z list Skip directly to navigation Skip directly to page options Skip directly to site content

Data & Statistics

Doctor listening to a baby's heart

Congenital heart defects (CHDs) are the most common types of birth defects, and babies born with these conditions are living longer and healthier lives. Find more statistics about CHDs below.

Number of U.S. Babies Born with CHDs

  • CHDs affect nearly 1% of―or about 40,000―births per year in the United States.1,2
  • The prevalence (the number of babies born with heart defect compared to the total number of births) of some CHDs, especially mild types, is increasing, while the prevalence of other types has remained stable. The most common type of heart defect is a ventricular septal defect (VSD).3,4
  • About 25% of babies with a CHD have a critical CHD. Infants with critical CHDs generally need surgery or other procedures in their first year of life. [Read summary]
  • The prevalence of all types of CHDs, including critical CHDs, varies by state and by type of defect. [Read summary]

Did You Know?

CDC is working with the New York State Department of Health, Emory University, Duke University, the University of Colorado – Denver, and the University of Utah to track individuals with CHDs across the lifespan. Understanding health issues and needs across the lifespan is vital to improving the lives of individuals born with these conditions. [Learn More]

Number of U.S. Children and Adults Living with CHDs

  • Currently, there are a number of state-based birth defects programs that track CHDs among newborns and young children, but no tracking system exists to look at the growing population of older children and adults with heart defects.
  • To date, other methods have been used to estimate the total number of children and adults with these defects.  For example, one study estimated that, in 2010, over 2 million infants, children, adolescents, and adults were living with CHDs in the United States. Researchers estimated that about 1 million U.S. children and about 1.4 million U.S. adults were living with CHDs.  Overall, there are slightly more adults living with CHDs than children. To obtain this estimate, researchers used data from administrative healthcare databases in Canada to estimate the prevalence of people living with CHDs and applied this to the U.S. Census data from 2010. [Read abstract]

CHD-Related Deaths

  • CHDs are a leading cause of birth defect-associated infant illness and death. [Read article]
  • Infant deaths due to CHDs often occur when the baby is less than 28 days old (sometimes called the neonatal period). In a study of neonatal deaths, 4.2% of all neonatal deaths were due to a CHD. [Read article]
  • During 1999–2006, there were 41,494 deaths related to CHDs in the United States. This means that CHDs were either the main cause of death or contributed to death in some way. During this time period, CHDs were listed as the main cause of death for 27,960 people. Nearly half (48%) of the deaths due to CHDs occurred during infancy (younger than 1 year of age). [Read article]

Survival

  • Survival of infants with CHDs depends on how severe the defect is, when it is diagnosed, and how it is treated.
  • About 97% of babies born with a non-critical CHD are expected to survive to one year of age. About 95% of babies born with a non-critical CHD are expected to survive to 18 years of age. [Read summary] Thus, the population of people with CHDs is growing.
  • About 75% of babies born with a critical CHD are expected to survive to one year of age. About 69% of babies born with critical CHDs are expected to survive to 18 years of age. [Read summary]
  • Survival and medical care for babies with critical CHDs are improving. Between 1979 and 1993, about 67% of infants with critical CHDs survived to one year. Between 1994 and 2005, about 83% of infants with critical CHDs survived to one year. [Read summary]

Illness and Disability

  • At least 15% of CHDs are associated with genetic conditions.5,6
  • About 20% to 30% of people with a CHD have other physical problems or developmental or cognitive disorders.7,8,9
  • Children with CHD are about 50% more likely to receive special education services compared to children without birth defects.10
  • The occurrence and severity of a developmental disability or delay increases with how complex the heart defect is. For example, more than 80% of individuals with a mild CHD have no developmental disabilities. However, more than half of those with a more critical type of CHD have some form of disability or impairment. Guidelines for screening, diagnosing, and managing developmental disabilities or delay in children with CHDs have recently been developed. [Read summary]

Costs

  • In the United States, hospital costs for the population of individuals with CHDs in 2004 were about $1.4 billion. Care for individuals with severe CHDs accounted for about $511 million, or about 37%, of the hospital costs associated with CHDs. [Read summary] If we updated these estimates to 2011 dollars, these costs for the population of individuals with CHDs total $1.9 billion. CDC researchers are working on updating these costs estimates with current data.
  • In 2005, for a privately insured population in the Unites States, the estimated medical care costs for an average infant with any CHD was about $23,000, and costs were higher for infants with a severe CHD. 10
  • In addition to the medical costs of care for CHDs, families of children with CHDs can face other costs, such as lifestyle changes, emotional stress, family uncertainty, and being unable to return to work in order to care for their child. [Read summary]

Highlighted Articles

Key Findings: Estimating the Number of People with Congenital Heart Defects Living in the United States
The journal Circulation has published a new study that estimates about 1 million children and 1.4 million adults in the United States were living with a congenital heart defect (CHD) in 2010.
(Published: July 5, 2016)

Key Findings: Newborn Screening for Critical Congenital Heart Defects Now Common Throughout the United States
In a new report in the journal, Pediatrics, CDC researchers and partners reviewed the overall effects of critical CHD screening, including costs and health outcomes (cost-effectiveness) of performing screenings, challenges at the state level for screening, and implementing screening in special settings.
(Published: April 15, 2016)

Key Findings — Use of Special Education Services among Children with CHDs
New CDC study findings in Pediatrics show that children with congenital heart defects (CHDs) received special education services more often than children without birth defects.
(Published: August 17, 2015)

Key Findings: State actions to adopt newborn screening for critical congenital heart defects
CDC’s Morbidity and Mortality Weekly Report has published a new study looking at state actions to adopt newborn screening for critical congenital heart defects (critical CHDs) using pulse oximetry – a simple, non-invasive way to measure the amount of oxygen in a newborn’s blood.
(Published: June 18, 2015)

Key Findings: Estimated Number of Infants Detected and Missed by Critical Congenital Heart Defect Screening
The journal Pediatrics has published a new study estimating the number of infants with critical congenital heart defects(critical CHDs) potentially detected or missed through universal screening for critical CHDs using pulse oximetry.
(Published: May 11, 2015)

Rapid Implementation of Statewide Mandate for Pulse Oximetry Newborn Screening to Detect Critical Congenital Heart Defects—New Jersey, 2011
New Jersey was the first state to pass a law and start a program where all licensed birthing hospitals are required to screen newborns for critical congenital heart defects. In the first three months of screening, about 98% of babies delivered were screened for critical congenital heart defects (CCHD).
(Published: July 9, 2014)

Key Findings: Prevalence of Congenital Heart Defects, Metro-Atlanta
From 1978-2005, the prevalence of more common (and less severe) congenital heart defects (CHDs) increased, while the prevalence of many severe CHDs remained stable. There are some differences in prevalence estimates between different racial/ethnic groups.
(Published: July 9, 2014)

Infant Death Due to Heart Defects
Congenital heart defects are conditions present at birth that can affect the way the heart works. They can cause lifelong disability or death. They are the most common type of birth defect, affecting nearly 40,000 births in the United States each year.
(Published: July 9, 2014)

Living with a Heart Defect
Learn about congenital heart defects and about Caden, a child living with this condition.
(Published: February 13, 2017)

Heart Defects Care for Life
Specialized care across the lifespan can help children and adults with a CHD live as healthily as possible.
(Published: February 9, 2015)

References

  1. Hoffman JL, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12):1890-1900.
  2. Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A. Prevalence of congenital heart defects in Atlanta, 1998-2005. J Pediatr. 2008;153:807-13.
  3. Botto LD, Correa A, Erickson D. Racial and temporal variations in the prevalence of heart defects. Pediatrics. 2001;107(3):e32. [Read summary]
  4. Bjornard K, Riehle-Colarusso T, Gilboa SM, Correa A. Patterns in the prevalence of congenital heart defects, metropolitan Atlanta, 1978 to 2005. Birth Defects Res Part A Clin Mol Teratol. 2013;97(2):87-94. [Read summary]
  5. Oyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PKA, Melbye M. Recurrence of congenital heart defects in families. Circulation. 2009;120;295-301. [Read summary]
  6. Hartman RJ, Rasmussen SA, Botto LD, Riehle-Colarusso T, Martin CL, Cragan JD, Shin M, Correa A. The contribution of chromosomal abnormalities to congenital heart defects: a population-based study. Pediatr Cardiol. 2011;32(8):1147-57. [Read summary]
  7. Miller A, Riehle-Colarusso T, Alverson CJ, Frias JL, Correa A. Congenital heart defects and major structural noncardiac anomalies, Atlanta, Georgia, 1968-2005. J Pediatr. 2011;159:70-8. [Read summary]
  8. Limperopoulos C, Majnemer A, Shevell MI, Rosenblatt B, Rohlicek C, Tchervenkov C. Neurodevelopmental status of newborns and infants with congenital heart defects before and after open heart surgery. J Pediatr. 2000;137:638-45. [Read summary]
  9. Shillingford AJ, Glanzman MM, Ittenbach RF, Clancy RR, Gaynor JW, Wernovsky G. Inattention, hyperactivity, and school performance in a population of school-age children with complex congenital heart disease. Pediatrics. 2008;121:e759-67. [Read summary]
  10. Riehle-Colarusso T, Autry A, Razzaghi H Boyle CA, Mahle WT, Van Naarden Braun K, Correa A. Congenital heart defects and receipt of special education services. Pediatrics. 2015; 136(3):496-504. [Read summary]
  11. Boulet SL, Grosse SD, Riehle-Colarusso T, Correa-Villasenor A. (2010) Health Care Costs of Congenital Heart Defects. In DF Wyszynski, A Correa-Villasenor, & TP Graham (Eds.), Congenital Heart Defects: From Origin to Treatment (p493-501). New York: Oxford University Press, Inc.
TOP