Heliobacteria

Heliobacteria
Scientific classification
Domain: Bacteria
Phylum: Bacillota
Class: Clostridia
Order: Clostridiales
Family: Heliobacteriaceae
Genera[1]

Candidatus Helioclostridium♠
Candidatus Heliomonas
Heliobacterium
Heliobacillus
Heliophilum
Heliorestis

Heliobacteria are a unique subset of prokaryotic bacteria that process light for energy. Distinguishable from other phototrophic bacteria, they utilize a unique photosynthetic pigment, bacteriochlorophyll g and are the only known Gram-positive phototroph.[2] They are a key player in symbiotic nitrogen fixation alongside plants, and share a reaction center with green-sulfur bacteria.[3][4]

RNA trees place the heliobacteria among the Firmicutes.[5] They have no outer membrane and like certain other firmicutes (Clostridia), they form heat-resistant endospores, which contain high levels of calcium and dipicolinic acid. Heliobacteria are the only firmicutes known to be phototrophic.

Metabolism

The heliobacteria are phototrophic: they convert light energy into chemical energy using a type I reaction center.[6][7] The primary pigment involved is bacteriochlorophyll g, which is unique to the group and has a unique absorption spectrum; this gives the heliobacteria their own environmental niche.[5] Phototrophic processes take place at the cell membrane, which does not form folds or compartments as it does in purple bacteria. Though heliobacteria are phototrophic, they can create energy without light using pyruvate fermentation, which generates significantly less energy than it could with light.[8]

Heliobacteria are photoheterotrophic, requiring organic carbon sources, and they are exclusively anaerobic.[5] Bacteriochlorophyll g is inactivated by the presence of oxygen, making them obligate anaerobes (they cannot survive in aerobic conditions). Heliobacteria have been found in soils,[9] hot springs,[10] soda lakes[11][12] and are common in the waterlogged soils of paddy fields.[9] They are avid nitrogen fixers, so are probably important in the fertility of paddy fields.[9] Heliobacteria are mainly terrestrial phototrophs, contrary to the multitudes of others that are aquatic, and often form mutualistic relationships with the plants near them.[13]

Taxonomy

Heliobacteria should not be confused with Helicobacter, which is a genus of bacteria with quite different characteristics.

Family Heliobacteriaceae[14][15]

  • Candidatus Helioclostridium♠ Girija et al. 2006
    • Candidatus Helioclostridium ananthapuram♠ Girija et al. 2006
  • Heliorestis Bryantseva et al. 2000
    • H. baculata Bryantseva et al. 2001
    • H. convolutaAsao et al. 2005
    • H. daurensis Bryantseva et al. 2000
  • Heliophilum Ormerod et al. 1996
    • Heliophilum fasciatum Ormerod et al. 1996
  • Heliobacillus Beer-Romero and Gest 1998
    • Candidatus H. elongatus♠ Girija et al. 2006
    • H. mobilis Beer-Romero and Gest 1998
  • Heliobacterium Gest and Favinger 1985
    • H. aridinosumGirija et al. 2006
    • H. chlorum Gest and Favinger 1985
    • H. gestii Ormerod et al. 1996
    • H. modesticaldum Kimble et al. 1996
    • H. sulfidophilum Bryantseva et al. 2001
    • H. undosum Bryantseva et al. 2001

Notes:
♠ Strain found at the National Center for Biotechnology Information (NCBI) but has no standing with the Bacteriological Code (1990 and subsequent Revision) as detailed by List of Prokaryotic names with Standing in Nomenclature (LPSN) as a result of the following reasons:
• No pure culture isolated or available for prokaryotes.
• Not validly published because the effective publication only documents deposit of the type strain in a single recognized culture collection.
• Not approved and published by the International Journal of Systematic Bacteriology or the International Journal of Systematic and Evolutionary Microbiology (IJSB/IJSEM).

References

  1. [Madigan M T, Martinko J M, Dunlap P V, Clark D P. (2009). Brock Biology of Microorganisms 12th edition, p. 453-454].
  2. "Properties and Evolutionary Implications of the Heliobacterial Genome". Advances in Botanical Research. 66: 67–97. 2013-01-01. doi:10.1016/B978-0-12-397923-0.00003-5. ISSN 0065-2296.
  3. "FX, FA, and FB Iron–Sulfur Clusters in Type I Photosynthetic Reaction Centers". 2013-01-01: 335–342. doi:10.1016/B978-0-12-378630-2.00184-5. {{cite journal}}: Cite journal requires |journal= (help)
  4. "Photosynthesis: Microbial". 2009-01-01: 325–341. doi:10.1016/B978-012373944-5.00352-7. {{cite journal}}: Cite journal requires |journal= (help)
  5. 1 2 3 Blankenship, Robert (2014). Molecular Mechanisms of Photosynthesis. Wiley-Blackwell. p. 19. ISBN 978-1405189750.
  6. Heinickel and Golbeck 2007
  7. Gisriel, Christopher; Sarrou, Iosifina; Ferlez, Bryan; Golbeck, John H.; Redding, Kevin E.; Fromme, Raimund (2017-07-27). "Structure of a symmetric photosynthetic reaction center–photosystem". Science. 357 (6355): 1021–1025. Bibcode:2017Sci...357.1021G. doi:10.1126/science.aan5611. ISSN 0036-8075. PMID 28751471.
  8. "Fermentation, mitochondria and regulation | Biological Principles". bioprinciples.biosci.gatech.edu. Retrieved 2021-04-26.
  9. 1 2 3 Madigan, Michael T.; Ormerod, John G. (1995), Blankenship, Robert E.; Madigan, Michael T.; Bauer, Carl E. (eds.), "Taxonomy, Physiology and Ecology of Heliobacteria", Anoxygenic Photosynthetic Bacteria, Advances in Photosynthesis and Respiration, Springer Netherlands, pp. 17–30, doi:10.1007/0-306-47954-0_2, ISBN 9780306479540
  10. Kimble, Linda K.; Mandelco, Linda; Woese, Carl R.; Madigan, Michael T. (1995-04-01). "Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils". Archives of Microbiology. 163 (4): 259–267. doi:10.1007/BF00393378. ISSN 1432-072X.
  11. Asao, Marie; Jung, Deborah O.; Achenbach, Laurie A.; Madigan, Michael T. (2006-10-01). "Heliorestis convoluta sp. nov., a coiled, alkaliphilic heliobacterium from the Wadi El Natroun, Egypt". Extremophiles. 10 (5): 403–410. doi:10.1007/s00792-006-0513-4. ISSN 1433-4909. PMID 16628377.
  12. Bryantseva, Irina A.; Gorlenko, Vladimir M.; Kompantseva, Elena I.; Achenbach, Laurie A.; Madigan, M. T. (1999-08-01). "Heliorestis daurensis, gen. nov. sp. nov., an alkaliphilic rod-to-coiled-shaped phototrophic heliobacterium from a Siberian soda lake". Archives of Microbiology. 172 (3): 167–174. doi:10.1007/s002030050756. ISSN 1432-072X. PMID 10460887.
  13. Asao, Marie; Madigan, Michael T. (June 2010). "Taxonomy, phylogeny, and ecology of the heliobacteria". Photosynthesis Research. 104 (2–3): 103–111. doi:10.1007/s11120-009-9516-1. ISSN 1573-5079. PMID 20094790.
  14. See the NCBI webpage on Heliobacteriaceae Data extracted from the "NCBI Taxonomy Browser". National Center for Biotechnology Information. Retrieved 2011-06-05.
  15. J.P. Euzéby. "Heliobacteriaceae". List of Prokaryotic names with Standing in Nomenclature. Archived from the original on 2013-01-27. Retrieved 2011-06-11.

Further reading

  • Gest H & Favinger J L (1983) Arch Microbiol 136:11-16.
  • Madigan M T (1992) In Balows et al. (eds) The Prokaryotes pp. 1981–1992 Springer New York.
  • Madigan M T & Ormerod J G (1995) In Blankenship et al. (eds) Anoxygenic Photosynthetic Bacteria pp 17–30. Kluwer Academic Publishers New York.
  • Ormerod J G et al. (1996) Arch Microbiol 165:226-234.
  • Madigan M T, Martinko J M, Dunlap P V, Clark D P. (2009). Brock Biology of Microorganisms 12th edition, p. 453-454
  • Heinnickel M & Golbeck J H (2007) Photosynthesis Research 92:35-53
This article is issued from Offline. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.