ديبلودوكس

الديبلودوكس (الاسم العلمي: Diplodocus)، (من الإغريقية:diplos = διπλός = مزدوج + dokos = δοκός = دعامة)،[1][2] وهو جنس من ديناصورات دبلودوكات سحليات الأرجل التي اكتشفت حفرياتها لأول مرة في عام 1877 بواسطة «صامويل ويستون». وأطلق عليه الاسم العام «أوثنييل تشارلز مارش» عام 1878، والذي يعني مزدوجات الدعامة، في إشارة إلى عظام شيفرون ذات العوارض المزدوجة الموجودة في الجانب السفلي من الذيل، والتي اعتبرت فريدة بعد ذلك.

اضغط هنا للاطلاع على كيفية قراءة التصنيف
ديبلودوكس
العصر: الجوراسي المتأخر، 154–152 مليون سنة
هيكل "الديبلودوكس كارنيجي" العظمي المركب في متحف كارنيجي للتاريخ الطبيعي؛ يعتبر أشهر هيكل عظمي للديناصور في العالم.

تصوير لالديبلودوكس هالورم
تصوير لالديبلودوكس هالورم
المرتبة التصنيفية جنس 
التصنيف العلمي
النطاق: حقيقيات النوى
المملكة: حيوانات
الشعبة: الحبليات
الشعيبة: الفقاريات
غير مصنف: الفكيات
غير مصنف: رباعيات الأطراف
غير مصنف: شبيهات الزواحف
غير مصنف: السلويات
غير مصنف: ثنائيات الأقواس
غير مصنف: الديناصورات
غير مصنف: سحليات الورك
الرتيبة: أشباه سحليات الأرجل
غير مصنف: سحليات الأرجل
غير مصنف: الدبلودوكينات
الفصيلة: الدبلودوكات
الجنس: ديبلودوكس
الاسم العلمي
Diplodocus
مارش، 1878
معرض صور ديبلودوكس  - ويكيميديا كومنز 

عاش هذا الجنس من الديناصورات بمنتصف غرب أمريكا الشمالية في نهاية العصر الجوراسي. وهي أحد أكثر أحافير الديناصورات شيوعا الموجودة في منتصف وأعلى تكوين موريسون، منذ حوالي 154 إلى 152 مليون سنة، في نهاية مرحلة الكيمريدجي.[3] يسجل تكوين موريسون بيئة ووقت يهيمن عليهما ديناصورات سحليات الأرجل العملاقة، مثل الأباتوصور، والباروصور والبراكيوصور والبرنتوصور والكاماراصور.[4] والتي قد يكون حجمها الكبير رادعا للمفترسات مثل الألوصور والسيراتوصور: وقد تم العثور على بقاياها في نفس الطبقات الأرضية، والذي يوحي بأنها قد تعايشت مع الديبلودوكس.

يعتبر الديبلودوكس من بين الديناصورات التي يمكن التعرف عليها بسهولة، حيث لها شكل سحليات الأرجل نموذجي، كالعنق والذيل الطويلين، والأرجل الأربعة المتينة. وقد كان يعتبر أطول ديناصور معروف لعدة سنوات.

الوصف

مقارنة حجم أنواع الديبلودوكس

تعتبر الديبلودوكسات من أكثر سحليات الأرجل شهرة، حيث أنها كبيرة جدا ومن الحيوانات الرباعية الحركة، ولديها عنق طويل، وكذلك ذيل طويل شبيه بالسوط. أطرافها الأمامية أقصر قليلاً من أطرافها الخلفية، وهذا يؤدي غالبا إلى وضعية أفقية. وتشابه في ميكانيكيتهات ذات العنق الطويل والذيل الطويل المدعوم بأربعة أرجل قوية بالجسر المعلق.[5] وفي الحقيقة يعد «الديبلودوكس كارنيغي» (CM 84) حاليا أحد أطول الديناصورات المعروفة بهيكل عظمي كامل، بطول إجمالي يبلغ 25 متر[6] وارتفاع 6.5 متر عند الرقبة.[7] وتتراوح تقديرات كتلة الديبلودوكس كارنيغي ما بين بين 11.5 و 19.7 طن ووفقا للعلماء هي كالتالي: 11.5 طن،[8] و12.7 طن،[9] و16 طن،[10] و19.7 طن.[7][11][12] وتقدر الكتلة الحديثة للديبلودوكس كارنيغي في نطاق 10 إلى 16 طنا متريا.[7][9][12][13][14][15]

الفقرات الذيلية للديبلودوكس كارنيغي ويظهر فيه العظم السبعاني مزدوجة الدعامة الذي اخذ منه هذا الجنس الاسم، متحف التاريخ الطبيعي في لندن

كان ال«ديبلودوكس هالوروم» المعروف من بقاياه، أكبر الأنواع ويقدر بحجم أربعة أفيال.[16] عندما تم وصفه لأول مرة في عام 1991، قام المكتشف «ديفيد جيليت» بحساب طوله حيث قدره بـ52 مترا،[17] مما يجعله أطول ديناصور معروف (باستثناء الديناصورات المعروفة من بقاياها النادرة، مثل الأمفيسلياس). تتراوح بعض تقديرات الوزن الحالي إلى 113 طنا متريا. أما الطول فقد تعدل فيما بعد نزولا إلى 33 - 33.5 متر وبعد ذلك إلى 32 متر [7][18][19][20] بناءً على النتائج التي بينت أن «ديفيد جيليت» أخطأ في الفقرات 12-19 وكانت في غير موضعها وكانت الفقرات 20–27. يستند الهيكل العظمي للديبلودوكس كارنيغي شبه الكامل في متحف كارنيغي للتاريخ الطبيعي في بيتسبرغ في بنسيلفانيا على أساس تقديرات حجم «الديبلودوكس هالوروم» بشكل أساسي، كما وجد أن ذيله الثالث عشر قد جاء من ديناصور آخر، مما يجعل من تقديرات حجم «الديبلودوكس هالوروم» أبعد من ذلك، وقلل من حجم الديبلودوكس هالوروم بنحو 30% ليصبح بطول 32 متر تقريبا ووزن 25-30 طنا. في حين أن الديناصورات مثل السوبرصور قد تكون أطول، لكن بقايا هذه الحيوانات الأحفورية ليست سوى مجزأة.[21]

الرقبة والرأس

رأس الديبلودوكس معاد تشكله تاريخياً بطرق مختلفة:
a) الجمجمة.
b) رسم كلاسيكي للرأس مع فتحتي الأنف في الأعلى.
c) مع خرطوم تخميني.
d) تصوير حديث بفتحات أنف منخفضة على الخطم وأحتمال وجودحجرة رنانة.

تتكون رقبة الديبلودوكس من 15 فقرة على الأقل وقد تكون موازية للأرض ولا يمكن رفعها بشكل كبير بحيث لايزيد عن 30 درجة فوق محوره الأفقي.[22] لم يتم العثور على أي جمجمة مؤكدة بأنها للديبلودوكس، بالرغم من أن جماجم الدبلودوكات الأخرى المرتبطة بالديبلودوكس (مثل الغالياموبس) كانت معروفة بشكل جيد. فقد كانت جماجم الدبلودوكات صغيرة جدا مقارنة بحجم أجسامها، ويمتلك الديبلودوكس أسنانا صغيرة تشبه الوتد متجهة إلى الأمام وموجودة فقط في الأجزاء الأمامية من الفكين.[23] والتجويف القحفي لديها صغير كما هو الحال الدبلودوكات الأخرى.

تصور لـ"الديبلودوكس كارنيغي" بالرقبة الأفقية، والذيل كالسوط المرن، والأشواك الكيراتينِيّة والخياشيم منخفضة على الخطم.

كان التصور لرأس الديبلودوكس بأنه عريض بسبب موضع فتحات الأنف في قمة الجمجمة. وهناك تكهنات حول ما إذا كان هذا التكوين يعني أن للديبلودوكس خرطوم.[24] لكن دراسة حديثة زعمت أنه لا يوجد دليل لتشريح الأعصاب القديم يدعم فرضية الخرطوم.[25] وقد لوحظ أن العصب الوجهي لهذه الحيوانات طويل كما لدى الفيلة، لأن هذا العصب يغذي الخرطوم. وتشير الدلائل إلى أن العصب الوجهي صغير جدا في الديبلودوكس. تشير الدراسات التي أجراها «لورانس ويتمر» والتي نُشرت في عام 2001، بما أن الخياشيم بأعلى الرأس، فإن الخياشيم اللحمية الحالية اسفل بدرجة كبيرة وتكون على الخطم.[26]

الذيل

"الديبلودوكس كارنيغي" جزء من مجموعة متحف لا بلاتا في الأرجنتين.

يمتلك الديبلودوكس ذيل طويل جدا، يتكون من حوالي 80 فقرة ذيلية،[27] والتي تقارب ضعف التي في ذيول سحليات الأرجل السابقة (مثل الشونوصور لديه 43 فقرة ذيلية)، وأكثر من التي لدى كبيرات المنخر المعاصرة (مثل الكاماراصور لديه 53 فقرة ذيلية). ويعتقد أن وظيفة هذا الذيل هي للدفاع عن النفس[28] أو لإثارة الصّخب (من خلال الفرقعة كالسوط).[29] وقد يكون الذيل بمثابة ثقل لموازن الرقبة. ويوجد في الجزء الأوسط من الذيل «دعاماتين» (العظم السبعاني بشكله الغريب والذي أعطى الديبلودوكس هذا الاسم). وقد يكون لها دعم للعمود الفقري، أو ربما منع الأوعية الدموية من السحق عندما يصطدم ذيل الحيوان الثقيل بالأرض أو ضد بعض الحيوانات المفترسة. وتظهر هذه «الدعاماتين» أيضا في بعض الديناصورات المرتبطة بالديبلودوكس. في البداية كان يُعتقد أن العظام السبعانية بهذا الشكل الخاص فريدة من نوعها بالنسبة إلى الديبلودوكس؛ لكن منذ ذلك الحين فقد تم اكتشافها في أفراد أخرى من فصيلة الدبلودوكات وكذلك في سحليات الأرجل الغير دبلودوكاتية، مثل المامنتشيصور.[30]

الأطراف

كسحليات الأرجل الأخرى فقد تعدلت القائمة الأمامية («الأقدام» الأمامية) للديبلودوكس بشكل كبير، وكان ترتيب عظام الإصبع واليد بعمود رأسي على شكل حدوة حصان في المقطع العرضي. وجميع أصابع ليس لديها مخالب باستثناء إصبع واحد في الطرف الأمامي، وهذا المخلب كبير جدا مقارنة بسحليات الأرجل الأخرى، حيث أنه مفلطح ومنفصل عن عظام اليد. ولا تعرف وظيفة هذا المخلب المتخصص.[31]

الجلد

أشكال الحراشف لعينة من الديبلودوكس:
(1) مستطيل.
(2) بيضاوية ومقبب.
(3) صفوف لحراشف مقوسة.
(4) كروية.

في عام 1990 أظهر اكتشاف الطبعات الجلدية لأجزاء الديبلودوكس أن بعض الأنواع كانت لها أشواك كيراتينية مدببة، تشبه إلى حد كبير بالموجودة على حيوان الإغوانة ويصل طولها إلى 18 سم، وتوجد في طرف الذيل، وربما على طول الظهر والرقبة أيضا كما في الهادروصوريات.[32][33] وقد تم تجسيد العمود الفقري في العديد من عمليات إعادة البناء الحديثة للديبلودوكس، ولا سيما في السلسلة الوثائقية «برفقة الديناصورات».[34] يبين الوصف الأصلي للعمود الفقري إلى أن العينات في «محجر هوي» الذي يقع بالقرب من شيل، وايومنغ أنه كان مرتبط ببقايا هيكلية لدبلودوكات غير موصوفة «تشبه الديبلودوكس والباروصور».[32] وقد تم ترجيح العينات من هذا المحجر منذ ذلك الحين إلى الكاتيدوكس سيبري والباروصور، بدلا من الديبلودوكس.[3][35]

تم اكتشاف الجلد المتحجر لعينات الديبلودوكس في محجر يوم الأم، وتبين العينات أنواع مختلفة من أشكال الحراشف، منها مستطيلي الشكل، والمضلع، والحصباني، والبيضوي الشكل، والمقبب، والكروي. تختلف هذه الحراشف في الحجم والشكل حسب على موقع الجلد، حيث أن أصغرها يصل إلى حوالي 1 مم بينما يصل أكبرها إلى 10 مم. وتشير اتجاهات بعض هذه الحراشف إلى المكان الذي تنتمي إليه في الجسم. على سبيل المثال، الحراشف البيضاوية تكون متجهة معا بكتل وتشبه الحراشف الموجودة في ظهور الزواحف الحديثة. هناك اتجاه آخر على الحفرية يتكون من صفوف مقوسة من الحراشف المربعة التي تقطع نقش الحراشف المتعدد الأضلاع القريب منها. ويلاحظ أن هذه الصفوف المقوسة تشبه اتجاهات الحراشف التي حول أطراف التماسيح، مما يشير إلى أن هذه المنطقة ربما تكون قد نشأت من حول الأطراف في الديبلودوكس. تعتبر أحفورة الجلد صغيرة في الحجم، حيث يصل طولها إلى أقل من 70 سم. نظرًا للكم الهائل من تنوع الحراشف الملحوظ في هذه المنطقة الصغيرة، بالإضافة إلى كون الحراشف أصغر مقارنة بحفريات حراشف الديبلودوكسات الأخرى، ومن المحتمل وجود مواد صغيرة في محجر يوم الأم قد تكون «يافعة»، التي من المفترض أن يكون الجلد قد نشأ من صغر الديبلودوكسات.[36]

الاكتشاف والأنواع

إعادة ترميم الأصلي للهيكل العظمي لـ"الديبلودوكس كارنيغي" بواسطة هاتشر 1901

بين عامي 1878 و 1924 تم وصف عدة أنواع من الديبلودوكسات. فقد تم العثور على أول هيكل عظمي لها عام 1877 في مدينة كانون، بولاية كولورادو، عن طريق كل من العالمين بنجامين مودج وصامويل ويستون، وقد أطلق عليه عالم الحفريات أوثنييل تشارلز مارش اسم «الديبلودوكس لونغوس» (الاسم العلمي: Diplodocus longus) في عام 1878.[37] على الرغم من «الديبلودوكس كارنغي» ليس النوع النمطي إلا أنه أكثر الأنواع شهرة بسبب العدد الكبير من الهياكل العظمية لهيكلها في المتاحف حول العالم. منذ ذلك الحين فقد تم العثور على بقايا للديبلودوكس في تكوين موريسون في ولايات الأمريكية الغربية كولورادو، ويوتا، ومونتانا، ووايومنغ. تعتبر أحافير هذا الحيوات شائعة باستثناء الجمجمة، التي لم يعثر عليها مع الهياكل العظمية الكاملة. يعرف «الديبلودوكس هايي» من هيكله العظمي الجزئي والجمجمة التي اكتشفها «ويليام أوترباك» في عام 1902 بالقرب من شيريدان بولاية وايومنغ، وقد تم وصفه في عام 1924.[38] وفي عام 2015 تمت إعادة تسميته كجنس منفصل باسم الغالياموبس، وتمت الإشارة إلى العديد من عينات الديبلودوكس الأخرى إلى هذا الجنس، دون ترك أي جماجم معروفة ومحددة للديبلودوكس.[3]

يمتلك الديبلودوكس والباروصور من تشكيل موريسون عظام أطراف متشابهة جدًا. في الماضي، كانت عظام الأطراف المعزولة تُنسب تلقائيًا إلى الديبلودوكس، ولكن يبدو في الحقيقة أنها تنتمي إلى الباروصور.[39] وقد تم استرداد بقايا أحافير الديبلودوكس المستخرجة من المنطقة الطبقية رقم 5 من تشكيل موريسون.[40]

الأنواع الصالحة

إعادة بناء الهيكل العظمي لعينات "الديبلودوكس كارنيغي" (CM 84 وCM 94) مع الأجزاء المفقودة أعيد بناؤها بديبلودوكس أخرى.
  • «الديبلودوكس كارنيغي» (D. carnegii)، وهي أكثرها شهرة، سميت نسبة إلى أندرو كارنيغي، ويعود سبب شهرتها إلى هيكلها العظمي الشبه مكتمل (عينة "CM 84") وقد تم تجميعها بواسطة «جيكوب ورتمان»، في متحف كارنيغي للتاريخ الطبيعي في بيتسبرغ ولاية بنسيلفانيا، وتم وصفها وتسميتها من قبل جون بيل هاتشر في عام 1901.[41] وتم إعادة النظر بأنه نوع نمطي للديبلودوكس.[42]
  • «الديبلودوكس هالوروم» (D. hallorum)، وقد تم وصفه لأول مرة في عام 1991 من قبل «ديفيد جيليت» واسماه «السيسموصور هالي» (Seismosaurus halli) وكانت بقايان عبارة عن جزء من هيكل عظمي يتكون من فقرات وحوض والأضلاع (عينة NMMNH P-3690)، وقد تم العثور عليها في عام 1979.[43] حيث أن الاسم المحدد كان تكريما لشخصين هما «جيم» و«روث هول»، وقد اقترح جورج أولشيفسكي فيما بعد تعديل الاسم إلى «سيسموصور هالوروم» (S. hallorum)، وقد استخدام إضافة الجمع الإلزامية؛ ثم قام جيليت بإصدار الاسم الذي اتبعه الآخرون،[17] بما فيهم كينيث كاربنتر (2006).[18] في عام 2004، تم تقديم عرض في المؤتمر السنوي للجمعية الجيولوجية الأمريكية حجة لكون «السيسموصور» مرادف اصغر للديبلودوكس.[44] وتبع ذلك منشور في تفصيل أكثر في عام 2006، ليس لتغيير تسمية أنواع «الديبلودوكس هالوروم» فقط، بل التوقع أيضا أنه يمكن أن يكون هو نفسه «الديبلودوكس لونغوس» (D. longus). إن اعتبار «الديبلودوكس هالوروم» كعينة من «الديبلودوكس لونغوس» تم اتخاذها كذلك من مكتشفي السوبرصور، وبالتالي دحض الفرضية السابقة التي تقول بأن السيسموصور والسوبرصور هما نفس الشيء.[45] في عام 2015 أشار تحليل للعلاقات الديبلودوكس إلى أن هذه الآراء تستند إلى عينات مرجعية أكثر اكتمالا من «الديبلودوكس لونغوس». وقد خلص مؤلفو هذا التحليل إلى أن تلك العينات كانت بالفعل من نفس الأنواع مثل «الديبلودوكس هالوروم»، لكن نوع «الديبلودوكس لونغوس» نفسه كان اسما مبهما.[3]

الأسماء المبهمة (أنواع مشكوك فيها)

(عينة USNM 2672) جمجمة كان يُعتقد سابقًا أنها تنتمي إلى النموذج النوعي لـ«الديبلودوكس لونغوس»
  • «الديبلودوكس لونغوس» (D. longus) النوع النمطي، يعرف بالفقرتين الذيليتين الكاملتين والمجزأة من تكوين موريسون (محجر فيلتش) في كولورادو. بالرغم من أن العديد من العينات الكاملة قد نُسبت إلى «الديبلودوكس لونغوس»،[46] إلا أن التحليل التفصيلي يبين أن الحفرية الأصلية تفتقر إلى الميزات الضرورية للسماح بالمقارنة مع العينات الأخرى. لهذا السبب تم اعتباره اسما مبهما، وهو الوضع الغير مثالي للأنواع من جنس مشهور كالديبلودوكس.[3][42] وقد تم الطلب من اللجنة الدولية للتسميات الحيوانية من جعل «الديبلودوكس كارنيغي» (D. carnegii) نوع نمطي جديد. لكن هذا الطلب تم رفضه من قبل اللجنة وتم الحفاظ على اسم «الديبلودوكس لونغوس» كنوع نمطي.[47]
  • «الديبلودوكس لاكوسترس» (D. lacustris)، وهو اسم مبهم تم تسميته بواسطة أوثنييل مارش في عام 1884 بناءً على عينة (YPM 1922) التي عثر عليها آرثر ليكس، والتي تتكون من الأنف والفك العلوي لحيوان أصغر في موريسون، كولورادو.[48] ويعتقد الآن أن هذه البقايا كانت لحيوان غير ناضج وليس من نوع منفصل.[49] في عام 2015، تم استنتاج أن تلك العينة تنتمي بالفعل إلى الكاماراصور.[3]

التصنيف

بحسب الدراسات التي أجريت، فإن الديبلودوكسات تقف على قدميها الخلفيتين وتمد رقابها الطويلة لتصل إلى أكثر الأوراق خضرة الموجودة في قمم الأشجار. تشارلز ر. ونايت، 1911.

يعتبر الديبلودوكس جنس نمطي وقد أخذت منه فصيلة الدبلودوكات التي ينتمي إليها هذا الاسم.[48] وبما أن ديناصورات هذه الفصيلة لا تزال ضخمة إلا أنها ذات بنية أكثر رشاقة من سحليات الأرجل الأخرى كالتيتانوصوريات والبراكيوصوريات. وتتميز جميعها بالرقاب الطويلة والذيول ذات الوضعية الأفقية، ولها أطراف أمامية أقصر من الأطراف الخلفية. ازدهرت الدبلودوكات في العصر الجوراسي المتأخر في أمريكا الشمالية وربما أفريقيا،[27] ويبدو أنه حلت مكانها التيتانوصورات خلال العصر الطباشيري.

تشمل أسرة الدبلودوكونات الديبلودوكس وأقرب أقربائها ومنها الباروصور. والأكثر ارتباطًا هو الأباتوصور المعاصر، الذي لا يزال يعتبر دبلودوكات، وإن لم يكن من الدبلودوكونات، لأنه عضو في الأسرة الشقيقة للأباتوصوراوات.[50][51] كما أن بعض العلماء حددوا الدينيروصور البرتغالي والتورنيريا الأفريقي بأنهما أقرباء للديبلودوكس.[52][53]

وتتألف فصيلة الدبلودوكينات العليا من الدبلودوكات، وكذلك من الديكروصوريات، والريباشوصوريات، والسوواسيا،[50][51] والأمفيسلياس[53] وربما الهابلوكانثصور،[54] سابقا كانت تشمل النميغتوصوريات، وحاليا ضمن الليثوستروتيا داخل التيتانوصوريات.[55][56] هذا الفرع الحيوي هي المجموعة الشقيقة للماكروناريا (الكاماراصورات، والبراكيوصوريات والتيتانوصوريات).[54][56] وتشكل هذه الأصناف سحليات الأرجل الحديثة التي تعتبر أكبر مجموعة متنوعة وناجحة من ديناصورات أشباه سحليات الأرجل.

علم تطور السلالات

يعتمد مخطط النسل التالي على تحليل النشوء والتطور الذي أجراه «وايتلوك» في عام 2011، والذي يوضح علاقات ديبلودوكس بين الأجناس الأخرى المرتبطة بفصيلة الدبلودوكات:

 الدبلودوكات

الأباتوصور




اسوبرصور




الدينيروصور



التورنيريا




الباروصور



الديبلودوكس






فيما يلي مخطط النسل للدبلودوكات قام بإعداده كل من ايمانويل تشوب وأوكتافيو ماتيوس وروجر بنسون في عام 2015 وستند حسب الأنواع، ويلاحظ فيه غياب «الديبلودوكس لونغوس» لأن «الديبلودوكس كارنيغي» يعتبر نوع من الجنس:[3]

هيكل عظمي للديبلودوكس الملقب "الغامض"، متحف علم الحيوان في كوبنهاغن.
دبلودوكات

أمفيسلياس التوس



أباتوصوراوات

أنواع لم تسمى





الأباتوصور اياكس



الأباتوصور لويزا





البرنتوصور ايكسيلوس




البرنتوصور يانابين



البرنتوصور بارفوس






الدبلودوكونات

أنواع لم تسمى




التورنيريا الأفريقي





السوبرصور لورينانسيس



السوبرصور فيفياناي





اللينكوبال لاتكودا




الغالياموبس هايي





الديبلودوكس كارنيغي



الديبلودوكس هالوروم





الكاتيدوكس سيبيري



الباروصور لينتس











البيولوجيا القديمة

تصوير لبيئة ديناصور "الديبلودوكس هولوروم"

يعد الديبلودوكس أحد أفضل الديناصورات التي تمت دراستها وذلك بسبب كثرة بقايا الهياكل العظمية. على مر السنين تم وضع موضوعات لنظريات مختلفة للعديد من جوانب أسلوب حياتها.[30] تشير المقارنات بين الحلقات الصلبة للدبلودوكينات والطيور والزواحف الحديثة إلى أنها نشطة طوال اليوم خلال فترات قصيرة.[57]

الموائل

مقارنة بين طريقتين لحياة الديبلودوكس المقترحة عبر التاريخ.

افترض «أوثنييل مارش» ومن بعده «جون هاتشر»[58] أن الديبلودوكس كانت مائية وذلك بسبب موقع فتحات الأنف عند قمة الجمجمة. وقد وصف السلوك المائي المماثل بشكل شائع لسحليات الأرجل الكبيرة الأخرى كالبراكيوصور والأباتوصور. وتشير دراسة أجراها كينيث كيرماك في عام 1951 إلى أن سحليات الأرجل قد لا تستطيع التنفس من خلال أنفها عندما يكون باقي جسمها مغمورًا بالماء، لأن ضغط الماء على جدار الصدر سيكون كبيرا.[59] منذ العقد 1970، تم الإجماع بشكل عام إلى أن سحليات الأرجل حيوانات أرضية راسخة، ترعى من الأشجار والسراخس والشجيرات.[60]

تناقش العلماء حول كيفية قدرة سحليات الأرجل على التنفس رغم أحجامها الكبيرة وأعناقها الطويلة، والذي قد يؤدي إلى زيادة مقدار الحيز الهامد. ويحتمل أن يكون لديها الجهاز التنفسي الذي لدى الطيور، الذي يعتبر أكثر كفاءة من نظام الثدييات والزواحف. ويبين بناء الرقبة والصدر في الديبلودوكس وجود هوائية هيكلية كبيرة، والتي كان من الممكن أن تلعب دور في التنفس كما تفعل في الطيور.[61]

وضعية الوقوف

في السابق كان اعتقاد بعض العلماء أن الديبلودوكس يمشى بأطرافه المثنية، لكن تغير هذا المفهم في هذا اليوم، وتم تجاهل هذه النظرية.
تصيوير للديبلودوكس صنعه "أوليفر بي هاي" في عام 1910.[62]

على مر السنين تغيرت النظرة لوضعية الوقوف بشكل كبير للديبلودوكس. على سبيل المثال، الشكل البنائي الكلاسيكي الذي تم بناء عام 1910 من قبل «أوليفر بي هاي» يبين اثنين من الديبلودوكسات على ضفاف أحد الأنهار بأطراف مفلطحة كالتي لدى السحلية. وقد بين «أوليفر» أن الديبلودوكس منفرش ذو أرجل مفلطحة ومشيته شبيهة بالسحلية،[63] وقد دعم «غوستاف تورنير» هذه الفكر العالم، لكن «ويليام هولاند» عارض هذه الفرضية حيث زعم أن الديبلودوكس المنفرش سيحتاج إلى خندق تحته لسحب بطنه من خلاله.[64] وفي العقد 1930 أدت اكتشافات آثار أقدام سحليات الأرجل إلى توقف نظرية «أوليفر».[60]

وضعية الرقبة المستقيمة لـ"الديبلودوكس كارنيغي" حسب تصور "مايك تايلور" والاخرون معه. (2009)

غالبًا ما تكون رقاب الدبلودوكات مرفوعة عالياً في الهواء لتسمح لها برعي الأشجار العالية. وقد تلخصت دراسات كانت تبحث في مورفولوجيا أعناق سحليات الأرجل إلى أن الوضع الطبيعي لعنق الديبلودوكس كان قريبا من الوضع الأفقي بدلا من العمودي، وقد استخدم ذلك بعض العلماء مثل «كينت ستيفنز» بالنقاش بأن سحليات الأرجل ومن ضمنها الديبلودوكس بأنها لا ترفع رؤوسها فوق مستوى الكتف.[65][66] وقد يكون الرباط القفوي قد ثبت الرقبة بهذا الوضع.[65] وقد وجدت دراسة أجريت عام 2009 بأن جميع رباعيات الأطراف تبدو وكأنها تمسك بقاعدة أعناقها عند أقصى امتداد رأسي ممكن عندما تكون في وضعية التأهب الطبيعية، وتم النقاش بأنه نفس الشيء ينطبق على سحليات الأرجل باستثناء أي خصائص فريدة غير معروفة تميز تشريح الأنسجة الرخوة لأعناقهم عن الحيوانات الأخرى. ووجدت الدراسة عيوبا في فرضيات «ستيفنز» فيما يتعلق بالنطاق المحتمل للحركة في أعناق سحليات الأرجل، وبالاستناد إلى مقارنة الهياكل العظمية بالحيوانات الحية فقد ناقشت الدراسة كذلك بأن الأنسجة الرخوة يمكن أن تزيد من المرونة أكثر العظام وحدها كما تم الإشارة إليه. لهذه الأسباب تم النقاش بأن الديبلودوكس كان يحمل رقبته بزاوية مرتفعة أكثر مما خلصت إليه الدراسات السابقة.[67]

هيكل عظمي للديبلودوكس بوضعية الوقوف، معروض في متحف التاريخ الطبيعي في لندن.

وكما هو الحال مع الباروصور الذي من نفس الفصيلة، فإن العنق الطويل جدا للديبلودوكس فإنه يعتبر مصدر للكثير من الجدل بين العلماء. أشارت دراسة أجرتها جامعة كولومبيا عام 1992 حول تركيبة رقبة الديبلودوكس تبين أن أطول رقبة تتطلب قلبا يبلغ وزنه 1.6 طن والذي يعادل عُشر وزن جسم الحيوان. وبينت الدراسة إلى أن حيوانات مثل هذه كان لديها «قلوب» بدائية مساعدة في أعناقها وهدفها الوحيد هو ضخ الدم إلى «القلب» التالي.[5] ونقاش آخر يقول بأن الوضع شبه الأفقي للرأس والرقبة سيقضي على مشكلة إمداد الدماغ بالدم لأنه لن يكون مرتفعا.[22]

النظام الغذائي

الدبلودوكات يبتلع حصوات عالقة (حصاة المعدة) بنباتات سيكاديات التي يقتات عليها.

للدبلودوكينات أسنان غير عادية مقارنة بسحليات الأرجل الأخرى. فتيجانها طويلة ونحيلة وبيضاوي الشكل في المقطع العرضي، وتشكل القمة نقطة مثلثة حادة.[23] وأكثر تآكل للأسنان يكون في القمة، بالرغم من أنه على عكس جميع أنماط التآكل الأخرى الملاحظة في سحليات الأرجل، ويكون نمط التآكل للدبلودوكينات للأسنان العلوية والسفلية في الجانب الشفوي (الخد).[23] وهذا يعني أن آلية تغذية الديبلودوكس والدبلودوكينات الأخرى كانت مختلفة بشكل جذري عن آلية تغذية سحليات الأرجل الأخرى. وأكثر الاحتمالات لسلوك التغذية للديبلودوكس هو تجريد فروع الأشجار من جانب واحد،[68][69][70] وهذا يفسر أنماط التآكل الغير عادية للأسنان (الناتجة عن ملامسة الأسنان للطعام). واستخدام صف واحد من الأسنان بجانب واحد لتجريد الفروع قد يجرد أوراق الشجر من الساق، بينما الجانب الآخر يستعمل كدليل وللاتزان. وبوجود منطقة قَبمَداريّ الممدودة (مقدمة العينين) من الجمجمة يمكن تجريد الأجزاء الأطول من السيقان في عملية واحدة.[23] وكذلك يمكن أن تساهم الحركة الرأسية للفكين السفليين لمهمتين في سلوك التغذية: (1) زيادة الانفراج للفك، و(2) السماح بإجراء تعديلات للمواضع النسبية لصفوف الأسنان، مما يخلق تجريدا سلسا.[23]

في عام 2012 استخدم العالم «يونغ» وآخرون معه نمذجة الميكانيكية الحيوية لفحص أداء جمجمة الدبلودوكوات، وقد خلص إلى أن اقتراح استخدام الأسنان في تجريد اللحاء لم يكن مدعوما بالبيانات، مما يظهر في ظل هذا السيناريو أن الجمجمة والأسنان ستخضع لضغط شديد. وقد تبين أن فرضيات تجريد الفروع و/أو العض الدقيق على حد سواء بأنها سلوكيات تغذية معقولة من الناحية الميكانيكية الحيوية.[71] وأيضا تتبدل أسنان الدبلودوكوات باستمرار طوال حياتها، عادة في أقل من 35 يوما، كما أن «مايكل داميك» وآخرون معه قد اكتشفوا أن الأسنان داخل كل مغرز تتطور إلى ما يصل إلى خمسة أسنان بديلة لتحل محل الأسنان التالية. وكشفت دراسات أجريت على أسنان الدبلودوكوات أيضًا أنها تفضل النباتات خلاف سحليات الأرجل الأخرى التي في موريسون مثل الكاماراصور. قد يكون هذا الذي سمح بشكل أفضل لوجود أنواع مختلفة من سحليات الأرجل دون منافسة.[72]

الديبلودوكس (أخضر) وأنواع أخرى من سحليات الأرجل في وضع ثلاثي القوائم؛ وتظهر النقاط البيضاء المركز التقريبي للكتلة، كما هو مقدر في الدراسات.

تم النقاش عن مرونة رقبة الديبلودوكس لكن يفارض أنها تكون قادرة على الرعي من مستويات منخفضة حوالي 4 أمتار عندما تكون على الأربع أفدام.[22][65] لكن أظهرت دراسات أن مركز كتلة الديبلودوكس قريب جدا من تجويف الورك؛[73][74] وهذا يعني أنه يمكن للديبلودوكس أن يرتفع إلى وضعية بقدمين وبجهد قليل نوعا ما. كما أنه يتمتع بميزة استخدام ذيله الكبير كـ«دعامة» والتي من شأنها أن تسمح بوضع ثلاثي القوائم الذي يجعله مستقرا وثابتا. ويمكن أن يزيد وضع الثلاثي القوائم من الديبلودوكس إلى ارتفاع في التغذية حتى حوالي 11 مترا.[74][75]

كما أن نطاق حركة الرقبة يسمح للرأس بأن يرعى تحت مستوى الجسم، وقد دفع ذلك لبعض العلماء بالتكهن حول ما إذا كانت الديبلودوكسات ترعى نباتات المياه المغمورة في ضفاف الأنهار. ويدعم مفهوم وضعية التغذية هذا من خلال الأطوال النسبية للأطراف الأمامية والخلفية. بالإضافة إلى أنها تستخدم أسنانها الشبيهة بالوتد لأكل نباتات الماء اللينة.[65] وفي 2013 خالف «ماثيو كوبلي» وآخرون هذه الفكرة بعد أن وجدوا أن العضلات والغضاريف الكبيرة ستجعل من حركة الرقبة محدودة. وقد بينوا أن نطاق تغذية سحليات الأرجل سبيه بالديبلودوكسات حيث كانت أصغر مما كان يعتقد بالسابق، وربما اضطرت تلك الحيوانات إلى تحريك أجسادها بالكامل للوصول إلى المناطق التي يمكنها أكل النباتات فيها. كما أنها قد تقضي وقتا أطول في البحث عن الطعام لتلبية الحد الأدنى لاحتياجاتها من الطاقة.[76][77] خلال 2013 و 2014 خالف «مايك تايلور» استنتاجات كوبلي والآخرون الذين معه، حيث قام بتحليل حجم وموضع الغضروف الفقري لتحديد مرونة عنق الديبلودوكس والأباتوصور. وجد «تايلور» أن رقبة الديبلودوكس كانت مرنة جدا، أما بالنسبة لـ«كوبلي» والآخرون فهي عكس ذلك، فتلك المرونة أقل مما هي عليه في الواقع كما تدل عليها العظام.[78]

في 2010 وصف الدكتور «وايتلوك» وآخرون معه جمجمة صغيرة تعود إلى ديبلودوكس (CM 11255) والتي تختلف بشكل كبير عن الجماجم البالغة من نفس الجنس بحيث أن خطمها لم يكن حادا، ولم تكن الأسنان محصورة في مقدمة الخطم. وتشير هذه الاختلافات إلى أن البالغة منها والصغار كانت تتغذى بشكل مختلف. ولم يتم سابقا ملاحظة مثل هذا الاختلاف البيئي بين البالغين والصغار في أشباه سحليات الأرجل.[79]

التكاثر والنمو

يعتقد العلماء أن سبب طول العنق للديبلودوكس بأنه تكيف غذائي،[80] إلا انه يعتقد أيضا أن العنق الضخم لها ولأقاربها ربما كان في الأساس عرضا جنسيا، وبالإضافة إلي الفوائد الأخرى للتغذية. لكن تم نفي تلك الفرضيات في عام 2011 بناء على دراسة مفصلة قام بها العلماء.[81]

لا يوجد دليل يشير إلى عادات تعشيش الديبلودوكس، بينما سحليات الأرجل الأخرى مثل التيتانوصوريات السالتاصور فقد تم ربطها بمواقع التعشيش.[82][83] وتشير مواقع أعشاش التيتانوصور إلى أنها قد وضعت بيضها بشكل جماعي على مساحة كبيرة في حفر ضحلة عديدة مغطاة بالأعشاب. ويبدو أن الديبلودوكس تفعل نفس الشيء. صور الفيلم الوثائقي برفقة الديناصورات (Walking with Dinosaurs) أن الأم في الديبلودوكس تستخدم المسرأ لوضع البيض، لكنها كانت مجرد تكهنات من قبل مؤلف الفيلم الوثائقي.[34] بالنسبة إلى الديبلودوكس وسحليات الأرجل الأخرى فإن حجم العش والبيوض الفردية صغير بشكل مدهش بالنسبة لمثل هذه الحيوانات الكبيرة. ويبدو أن هذا كان تكيفا مع ضغوط الافتراس، لأن البيض الكبير يتطلب وقتا أطول للحضانة وبالتالي سيكون معرضا لخطر أكبر.[84]

بناءً على عدد من الدراسات على أنسجة عظام الديبلودوكس بجانب سحليات الأرجل الأخرى، فقد تبين أنها نمت بمعدل سريع جدا، وبلوغ مرحلة النضج الجنسي بعد أكثر من عقد بقليل، وتستمر في النمو طوال حياتها.[85][86][87]

علم البيئة القديمة

تصور لأثنين من الديبلودوكس لونغوس

يعتبر تكوين موريسون سلسلة من الرواسب البحرية والرسوبية الضحلة التي يتراوح عمرها وفقا للتأريخ الإشعاعي بين 156.3 مليون سنة في قاعدته،[88] و146.8 مليون سنة في قمته،[89] بحيث يقع ضمن أواخر مرحلتي الأكسفوردي والكيمريدجي، وبداية مراحلة التيثوني من الجوراسي المتأخر. ويتم تفسير هذا التكوين على أنها بيئة ذات مناخ شبه قاحل ومواسم رطبة وجافة استثنائيّة. يمتد حوض موريسون حيث تعيش الدينوصورات من نيومكسيكو إلى ألبرتا وساسكاتشوان، وقد تشكل هذا الحوض عندما بدأت سلائف سلسلة فرونت من جبال روكي بالاندفاع نحو الغرب. ونقلت على اثرها الرواسب من مستجمعات المائية المواجهة للشرق عن طريق الجداول والأنهار وترسبت في الأراضي المنخفضة المستنقعية، والبحيرات وقنوات الأنهر، والسهول الفيضية.[90] ويشبه هذا التكوين في العمر تكوين لورينا في البرتغال وتكوين تينداغورو في تنزانيا.[91] يسجل تكوين موريسون البيئة والوقت الذي هيمن عليهما ديناصورات سحليات الأرجل العملاقة.[92] وتشمل الديناصورات المعروفة من موريسون:

وقد عُثر على الديبلودوكس بنفس المواقع التي عُثر فيها كل من الأباتوصور، والألوصور، والكاماراصور، والستيغوصور.[94] وتعد عينات الألوصور ما بين 70 إلى 75% من مجموع عينات وحشيات الأرجل وهي في أعلى مستوى غذائي الشبكةالغذائية في موريسون.[95] والعديد من ديناصورات تكوين موريسون هي نفس الأجناس التي شوهدت في الصخور البرتغالية في تكوين لورينا (بشكل رئيسي الألوصور، السيراتوصور، التوروصور، الستيغوصور)، أو لديها نظير قريب (البراكيوصور، اللوسوتيتان، الكامبتوصور، الدراكونيكس).[91] ومن الفقاريات الأخرى التي شاركت في هذه البيئة القديمة أسماك شعاعية الزعانف، والضفادع، السلمندر، والسلاحف مثل الدوريتوكلس، ومنقاريات الرأس، والسحالي، والتماسيح البرية والمائية مثل الهوبلوسوكس، بالإضافة إلى العديد من أنواع التيروصورات مثل الهارباكتوغناثوس والميساداستيلوس. كما شاعت أيضا المحاريات مثل ذوات الصدفتين والحلزونات المائية. وقد ظهرت نباتات تلك الفترة بواسطة أحافير الطحالب الخضراء، والفطريات، والنباتات الحزازية، والكنباث، ونخل سرخسي، والجنكة والعديد من فصائل المخروطيات. يختلف الغطاء النباتي من الغابات المحاذية للأنهار من سراخس الأشجار، والسراخس (الغابة الرواقية)، إلى السافانا السرخسية مع الأشجار العابرة مثل شبيهات الأروكاريا.[96]

في الثقافة

"ديبي" (Dippy)، أول نسخة طبق الأصل من "الديبلودوكس كارنيغي" في متحف التاريخ الطبيعي في لندن.
"الديبلودوكس كارنيغي" الخاص بـويليام هولاند في المتحف الوطني للتاريخ الطبيعي في باريس، كما كان في عام 1908.
"الديبلودوكس كارنيغي" معروض في برلين، ألمانيا، في عام 1908.

الديبلودوكس ديناصور مشهور وموصوف على نطاق واسع حيث تم عرضه في أماكن أكثر من أي سحليات أرجل أخرى. ومعضم ذلك يعود إلى وفرة بقايا الهياكل العظمية له ولأنه يعتبر منذ فترة طويلة كأطول ديناصور. وكذلك يعود السبب إلى التبرعات التي قدمها رجل الأعمال أندرو كارنيغي في بداية القرن العشرين، وقدم لأنحاء العالم العديد من هياكل البلاستر العظمية المجمعة[97] التي زودت الناس حول العالم بالكثير للتعرف عن هذا الديناصور. ولا تزال نسخ البلاستر لهياكل الديبلودوكس معروضة في العديد من المتاحف حول العالم، بما فيها «الديبلودوكس هايي» في متحف هيوستن للعلوم الطبيعية. وتعد سلسلة نسخ البلاستر لـ«الديبلودوكس كارنيغي» التي قدمها المتبرع «أندرو كارنيغي» وزوجته إلى متاحف ومؤسسات مختلفة هي أشهر مجموعة من الهياكل العظمية المصنوعة من بقايا أصلية. والمتاحف التي لديها على الأقل نسخة وحدة من هذه الهياكل هي كل من:

وبالطبع يبقى الأصل أحد مراكز الأهتمام من مجموعات متحف كارنيغي للتاريخ الطبيعي في بيتسبرغ. ويوجد هيكل عظمي مُركب لـ«الديبلودوكس لونغوس» في المتحف الوطني للتاريخ الطبيعي في واشنطن العاصمة الولايات المتحدة، بينما يوجد هيكل عظمي مُركب لـ«الديبلودوكس هالوروم» (سابقا السيسموصور)، والتي يمكن أن تكون مثل «الديبلودوكس لونغوس» في متحف نيو مكسيكو للتاريخ الطبيعي والعلوم.

لطالما كان الديبلودوكس موضوعا متكررا في أفلام الديناصورات والأفلام الوثائقية والخيالية. فقد تم عرضه في الحلقة الثانية من مسلسل بي بي سي التلفزيوني الحائز على عدة جوائز (برفقة الديناصورات)، وتبين حلقة «وقت الجبابرة» (Time of the Titans) حياة الديبلودوكس قبل 152 مليون سنة، عندما واجه هجمات من الأورنيثولستس، والستيغوصور والألوصور. يقدم فيلم الرسوم المتحركة فانتازيا من شركة والت ديزني العديد من سحليات الأرجل في مقطع «طقوس الربيع»، ويبدو أن احدها كان الديبلودوكس. وفي الأدب، يحتوي كتاب المئوية للروائي جيمس ميشنر على فصل مخصص للديبلودوكس، يروي فيه حياة الفرد وموته. الديبلودوكس هو المجسم الذي عادة ما يتم رؤيته بانتظام بين ألعاب الديناصورات والنماذج. فقد كان له نموذجان مختلفان للألعاب في مجموعة ألعاب كارنيجي (مجموعة كارنيجي، انظر مقالة ويكيبيديا الإنجليزية المقابلة هنا). يظهر في فيلم (العالم المفقود: الحديقة الجوراسية) العديد من سحليات الأرجل التي يمكن التعرف عليها، البعض منها مثل الديبلودوكس والبعض الآخر مثل المامنتشيصور.

مراجع

  1. Simpson, John؛ Edmund Weiner, المحررون (1989)، The Oxford English Dictionary (ط. 2nd)، Oxford: Oxford University Press، ISBN 978-0-19-861186-8.
  2. "diplodocus"، قاموس علم اشتقاق الألفاظ، مؤرشف من الأصل في 01 يوليو 2016.
  3. Tschopp؛ Mateus؛ Benson (2015)، "A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda)"، PeerJ، 3: e857، doi:10.7717/peerj.857، PMC 4393826، PMID 25870766.
  4. Turner, C.E.؛ Peterson, F. (2004)، "Reconstruction of the Upper Jurassic Morrison Formation extinct ecosystem—a synthesis"، Sedimentary Geology، 167 (3–4): 309–355، Bibcode:2004SedG..167..309T، doi:10.1016/j.sedgeo.2004.01.009.
  5. Lambert D. (1993)، The Ultimate Dinosaur Book، DK Publishing، ISBN 978-0-86438-417-1.
  6. Hartman, Scott (22 de julio de 2014)، "Smackdown: Supersaurus vs. Giraffatitan and Diplodocus" (باللغة الإنجليزية)، مؤرشف من الأصل في 30 يوليو 2019، اطلع عليه بتاريخ 5 de septiembre de 2015. {{استشهاد ويب}}: تحقق من التاريخ في: |تاريخ الوصول= و|تاريخ= (مساعدة)
  7. Paul, Gregory S. (2016)، Princeton Field Guide to Dinosaurs، Princeton University Press، ISBN 978-0-691-13720-9، مؤرشف من الأصل في 8 مارس 2021.
  8. Paul, Gregory S. (Fall 1994)، "Big Sauropods - Really, Really Big Sauropods" (PDF)، The Dinosaur Report، The Dinosaur Society، ص. 12–13، مؤرشف من الأصل (PDF) في 31 أغسطس 2021.
  9. Foster, J.R. (2003). Paleoecological Analysis of the Vertebrate Fauna of the Morrison Formation (Upper Jurassic), Rocky Mountain Region, U.S.A. New Mexico Museum of Natural History and Science:Albuquerque, New Mexico. Bulletin 23.
  10. Mazzetta؛ Christiansen, Per؛ Fariña, Richard A. (2004)، "Giants and Bizarres: Body Size of Some Southern South American Cretaceous Dinosaurs" (PDF)، Historical Biology، 16 (2–4): 71–83، doi:10.1080/08912960410001715132، مؤرشف من الأصل (PDF) في 6 مايو 2021، اطلع عليه بتاريخ 8 de enero de 2008. {{استشهاد بدورية محكمة}}: Cite journal requires |journal= (مساعدة)، تحقق من التاريخ في: |تاريخ الوصول= (مساعدة)
  11. Seebacher (2001)، "A new method to calculate allometric length-mass relationships of dinosaurs"، 21 (1): 51–60، doi:10.1671/0272-4634(2001)021[0051:ANMTCA]2.0.CO;2، مؤرشف من الأصل في 29 يونيو 2021، اطلع عليه بتاريخ 5 de septiembre de 2015. {{استشهاد بدورية محكمة}}: Cite journal requires |journal= (مساعدة)، تحقق من التاريخ في: |تاريخ الوصول= (مساعدة)، الوسيط غير المعروف |publicación= تم تجاهله (مساعدة)
  12. Benson؛ Campione؛ Carrano؛ Mannion؛ Sullivan؛ Upchurch؛ Evans (2014)، "Rates of Dinosaur Body Mass Evolution Indicate 170 Million Years of Sustained Ecological Innovation on the Avian Stem Lineage"، PLOS Biology، 12 (5): e1001853، doi:10.1371/journal.pbio.1001853، PMC 4011683، PMID 24802911.
  13. Paul, Gregory S. (2010)، Princeton Field Guide to Dinosaurs، Princeton University Press، ISBN 978-0-691-13720-9، مؤرشف من الأصل في 28 سبتمبر 2021.
  14. Dodson, P.؛ Behrensmeyer, A.K.؛ Bakker, R.T.؛ McIntosh, J.S. (1980)، "Taphonomy and paleoecology of the dinosaur beds of the Jurassic Morrison Formation"، Paleobiology، 6: 208–232، JSTOR 240035، مؤرشف من الأصل في 18 أبريل 2022.
  15. Coe, M.J.؛ Dilcher, D.L.؛ Farlow, J.O.؛ Jarzen, D.M.؛ Russell, D.A. (1987)، "Dinosaurs and land plants"، في Friis, E.M.؛ Chaloner, W.G.؛ Crane, P.R. (المحررون)، The Origins of Angiosperms and Their Biological Consequences، Cambridge University Press، ص. 225–258، ISBN 0-521-32357-6.
  16. Holtz؛ Rey (2011)، Dinosaurs: the most complete, up-to-date encyclopedia for dinosaur lovers of all ages (Winter 2011 appendix)، New York: Random House، ISBN 978-0-375-82419-7، مؤرشف من الأصل في 27 يوليو 2020.
  17. Gillette, D.D., 1994, Seismosaurus: The Earth Shaker. New York, Columbia University Press, 205 pp
  18. Carpenter, K. (2006). "Biggest of the big: a critical re-evaluation of the mega-sauropod Amphicoelias fragillimus." In Foster, J.R. and Lucas, S.G., eds., 2006, Paleontology and Geology of the Upper Jurassic Morrison Formation. New Mexico Museum of Natural History and Science Bulletin 36: 131–138.
  19. Herne, Matthew C.؛ Lucas, Spencer G. (2006)، "Seismosaurus hallorum: Osteological reconstruction from the holotype"، New Mexico Museum of Natural History and Science Bulletin، 36.
  20. "The biggest of the big"، Skeletaldrawing.com، 14 يونيو 2013، مؤرشف من الأصل في 20 يناير 2020، اطلع عليه بتاريخ 26 مايو 2016.
  21. Wedel, M. J. y Cifelli, R. L. «Sauroposeidon: Oklahoma’s Native Giant.» 2005. Oklahoma Geology Notes 65:2.
  22. Stevens؛ Parrish (1999)، "Neck posture and feeding habits of two Jurassic sauropod dinosaurs"، Science، 284 (5415): 798–800، Bibcode:1999Sci...284..798S، doi:10.1126/science.284.5415.798، PMID 10221910.
  23. Upchurch, P.؛ Barrett, P.M. (2000)، "The evolution of sauropod feeding mechanism"، في Sues, Hans Dieter (المحرر)، Evolution of Herbivory in Terrestrial Vertebrates، Cambridge University Press، ISBN 978-0-521-59449-3.
  24. Bakker, Robert T. (1986) The Dinosaur Heresies: New Theories Unlocking the Mystery of the Dinosaurs and their Extinction. New York: Morrow.
  25. Knoll, F., Galton, P. M., López-Antoñanzas, R. (2006). «Paleoneurological evidence against a proboscis in the sauropod dinosaur DiplodocusGeobios, 39: 215-221.
  26. Lawrence M. Witmer et al., «Nostril Position in Dinosaurs and other Vertebrates and its Significance for Nasal Function.» Science 293, 850 (2001).
  27. Wilson JA (2005)، "Overview of Sauropod Phylogeny and Evolution"، The Sauropods:Evolution and Paleobiology، Indiana University Press، ص. 15–49، ISBN 978-0-520-24623-2.
  28. Holland WJ (1915)، "Heads and Tails: a few notes relating to the structure of sauropod dinosaurs"، Annals of the Carnegie Museum، 9: 273–278.
  29. "Supersonic sauropods? Tail dynamics in the diplodocids"، Paleobiology، 23 (4): 393–409، 1997، doi:10.1017/s0094837300019801.
  30. Benton, Michael J. (2012)، Prehistoric Life، Dorling Kindersley، ص. 268–269، ISBN 978-0-7566-9910-9، مؤرشف من الأصل في 7 أبريل 2022.
  31. Bonnan, M. F. (2003)، "The evolution of manus shape in sauropod dinosaurs: implications for functional morphology, forelimb orientation, and phylogeny"، Journal of Vertebrate Paleontology، 23 (3): 595–613، doi:10.1671/A1108، S2CID 85667519.
  32. Czerkas (1993)، "Discovery of dermal spines reveals a new look for sauropod dinosaurs"، Geology، 20 (12): 1068–1070، Bibcode:1992Geo....20.1068C، doi:10.1130/0091-7613(1992)020<1068:dodsra>2.3.co;2.
  33. Czerkas, S. A. (1994). "The history and interpretation of sauropod skin impressions." In Aspects of Sauropod Paleobiology (M. G. Lockley, V. F. dos Santos, C. A. Meyer, and A. P. Hunt, Eds.), Gaia No. 10. (Lisbon, Portugal).
  34. Haines, T., James, J. Time of the Titans نسخة محفوظة October 31, 2013, على موقع واي باك مشين.. ABC Online.
  35. Tschopp؛ Mateus (2012)، "The skull and neck of a new flagellicaudatan sauropod from the Morrison Formation and its implication for the evolution and ontogeny of diplodocid dinosaurs"، Journal of Systematic Palaeontology، 11 (7): 1، doi:10.1080/14772019.2012.746589، hdl:2318/1525401، S2CID 59581535.
  36. Gallagher؛ Poole؛ Schein (2021)، "Evidence of integumentary scale diversity in the late Jurassic Sauropod Diplodocus sp. from the Mother's Day Quarry, Montana"، PeerJ، 9: e11202، doi:10.7717/peerj.11202، مؤرشف من الأصل في 2 مايو 2021.
  37. Marsh OC (1878)، "Principal characters of American Jurassic dinosaurs. Part I"، American Journal of Science، 3 (95): 411–416، doi:10.2475/ajs.s3-16.95.411، hdl:2027/hvd.32044107172876، S2CID 219245525.
  38. Holland WJ. The skull of Diplodocus. Memoirs of the Carnegie Museum IX; 379–403 (1924).
  39. McIntosh (2005)، "The Genus Barosaurus (أوثنييل تشارلز مارش)"، في Carpenter, Kenneth؛ Tidswell, Virginia (المحررون)، Thunder Lizards: The Sauropodomorph Dinosaurs، Indiana University Press، ص. 38–77، ISBN 978-0-253-34542-4، مؤرشف من الأصل في 5 مايو 2021.
  40. Foster, J. (2007). "Appendix." Jurassic West: The Dinosaurs of the Morrison Formation and Their World. Indiana University Press. pp. 327–329.
  41. Brezinski؛ Kollar (2008)، "Geology of the Carnegie Museum Dinosaur Quarry Site of Diplodocus carnegii, Sheep Creek, Wyoming"، Annals of Carnegie Museum، 77 (2): 243–252، doi:10.2992/0097-4463-77.2.243، S2CID 129474414.
  42. Tschopp؛ Mateus (2016)، "Diplodocus Marsh, 1878 (Dinosauria, Sauropoda): proposed designation of D. carnegii Hatcher, 1901 as the type species"، Bulletin of Zoological Nomenclature، 73 (1): 17–24، doi:10.21805/bzn.v73i1.a22، S2CID 89131617.
  43. Gillette (1991)، "Seismosaurus halli, gen. et sp. nov., a new sauropod dinosaur from the Morrison Formation (Upper Jurassic/Lower Cretaceous) of New Mexico, USA"، Journal of Vertebrate Paleontology، 11 (4): 417–433، doi:10.1080/02724634.1991.10011413.
  44. Lucas S, Herne M, Heckert A, Hunt A, and Sullivan R. Reappraisal of Seismosaurus, A Late Jurassic Sauropod Dinosaur from New Mexico. The Geological Society of America, 2004 Denver Annual Meeting (November 7–10, 2004). Retrieved on May 24, 2007. نسخة محفوظة 8 أكتوبر 2019 على موقع واي باك مشين.
  45. Lovelace؛ Hartman؛ Wahl (2007)، "Morphology of a specimen of Supersaurus (Dinosauria, Sauropoda) from the Morrison Formation of Wyoming, and a re-evaluation of diplodocid phylogeny"، Arquivos do Museu Nacional، 65 (4): 527–544.
  46. "Sauropoda"، The Dinosauria (ط. 2nd)، University of California Press، 2004، ص. 305، ISBN 978-0-520-24209-8، مؤرشف من الأصل في 28 سبتمبر 2021.
  47. ICZN. (2018)، "Opinion 2425 (Case 3700) – Diplodocus Marsh, 1878 (Dinosauria, Sauropoda): Diplodocus longus Marsh, 1878 maintained as the type species"، Bulletin of Zoological Nomenclature، 75 (1): 285–287، doi:10.21805/bzn.v75.a062، S2CID 92845326.
  48. Marsh (1884)، "Principal characters of American Jurassic dinosaurs. Part VII. On the Diplodocidae, a new family of the Sauropoda"، American Journal of Science، 3 (158): 160–168، Bibcode:1884AmJS...27..161M، doi:10.2475/ajs.s3-27.158.161، S2CID 130293109، مؤرشف من الأصل في 11 مايو 2021.
  49. Upchurch, P.؛ Barrett, P.M.؛ Dodson, P. (2004)، "Sauropoda"، في D. B. Weishampel؛ P. Dodson؛ H. Osmólska (المحررون)، The Dinosauria (ط. 2nd)، University of California Press، ص. 259–322، ISBN 978-0-520-25408-4، مؤرشف من الأصل في 15 أكتوبر 2021.
  50. Taylor, M.P.؛ Naish, D. (2005)، "The phylogenetic taxonomy of Diplodocoidea (Dinosauria: Sauropoda)"، PaleoBios، 25 (2): 1–7، ISSN 0031-0298.
  51. Harris, J.D. (2006)، "The significance of Suuwassea emiliae (Dinosauria: Sauropoda) for flagellicaudatan intrarelationships and evolution"، Journal of Systematic Palaeontology، 4 (2): 185–198، doi:10.1017/S1477201906001805، S2CID 9646734.
  52. Bonaparte؛ Mateus (1999)، "A new diplodocid, Dinheirosaurus lourinhanensis gen. et sp. nov., from the Late Jurassic beds of Portugal"، Revista del Museo Argentino de Ciencias Naturales، 5 (2): 13–29، مؤرشف من الأصل في 19 فبراير 2012، اطلع عليه بتاريخ 13 يونيو 2013.
  53. Rauhut, O.W.M.؛ Remes, K.؛ Fechner, R.؛ Cladera, G.؛ Puerta, P. (2005)، "Discovery of a short-necked sauropod dinosaur from the Late Jurassic period of Patagonia"، Nature، 435 (7042): 670–672، Bibcode:2005Natur.435..670R، doi:10.1038/nature03623، PMID 15931221، S2CID 4385136.
  54. Wilson, J. A. (2002)، "Sauropod dinosaur phylogeny: critique and cladistica analysis"، Zoological Journal of the Linnean Society، 136 (2): 217–276، doi:10.1046/j.1096-3642.2002.00029.x.
  55. Wilson JA. 2002. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zoological Journal of the Linnean Society 136: 217–276.
  56. Upchurch P؛ Barrett PM؛ Dodson P (2004)، "Sauropoda"، The Dinosauria (ط. 2nd)، University of California Press، ص. 316، ISBN 978-0-520-24209-8، مؤرشف من الأصل في 28 سبتمبر 2021.
  57. Schmitz, L.؛ Motani, R. (2011)، "Nocturnality in Dinosaurs Inferred from Scleral Ring and Orbit Morphology"، Science، 332 (6030): 705–8، Bibcode:2011Sci...332..705S، doi:10.1126/science.1200043، PMID 21493820، S2CID 33253407.
  58. Hatcher JB. "Diplodocus (Marsh): Its osteology, taxonomy, and probable habits, with a restoration of the skeleton". Memoirs of the Carnegie Museum, vol. 1 (1901), pp. 1–63
  59. Kermack, Kenneth A. (1951)، "A note on the habits of sauropods"، Annals and Magazine of Natural History، 12 (4): 830–832، doi:10.1080/00222935108654213.
  60. Gangewere, J.R. (1999). "Diplodocus carnegii نسخة محفوظة 12 January 2012 على موقع واي باك مشين.". Carnegie Magazine.
  61. Pierson (2009)، "The Physiology of Dinosaurs: Circulatory and Respiratory Function in the Largest Animals Ever to Walk the Earth"، Respiratory Care، 54 (7): 887–911، doi:10.4187/002013209793800286، PMID 19558740.
  62. Hay, O. P., 1910, Proceedings of the Washington Academy of Sciences, vol. 12, pp. 1-25.
  63. Hay, Dr. Oliver P., "On the Habits and Pose of the Sauropod Dinosaurs, especially of Diplodocus." The American Naturalist, Vol. XLII, Oct. 1908
  64. Holland (1910)، "A Review of Some Recent Criticisms of the Restorations of Sauropod Dinosaurs Existing in the Museums of the United States, with Special Reference to that of Diplodocus carnegii in the Carnegie Museum"، The American Naturalist، 44 (521): 259–283، doi:10.1086/279138، S2CID 84424110، مؤرشف من الأصل في 11 مايو 2021.
  65. Carpenter, Kenneth؛ Tidswell, Virginia, المحررون (2005)، "Neck Posture, Dentition and Feeding Strategies in Jurassic Sauropod Dinosaurs"، Thunder Lizards: The Sauropodomorph Dinosaurs، Indiana University Press، ص. 212–232، ISBN 978-0-253-34542-4، مؤرشف من الأصل في 5 مايو 2021.
  66. Upchurch, P؛ وآخرون (2000)، "Neck Posture of Sauropod Dinosaurs" (PDF)، Science، 287 (5453): 547b، doi:10.1126/science.287.5453.547b، مؤرشف من الأصل (PDF) في 8 مارس 2021، اطلع عليه بتاريخ 28 نوفمبر 2006.
  67. Taylor, M.P.؛ Wedel, M.J.؛ Naish, D. (2009)، "Head and neck posture in sauropod dinosaurs inferred from extant animals" (PDF)، Acta Palaeontologica Polonica، 54 (2): 213–220، doi:10.4202/app.2009.0007، S2CID 7582320، مؤرشف من الأصل (PDF) في 29 أغسطس 2019.
  68. Norman, D.B. (1985). The illustrated Encyclopedia of Dinosaurs. London: Salamander Books Ltd
  69. Dodson, P. (1990)، "Sauropod paleoecology"، في Weishampel, D.B.؛ Dodson, P.؛ Osmólska, H. (المحررون)، The Dinosauria" 1st Edition، University of California Press، ASIN B008UBRHZM.
  70. Barrett؛ Upchurch (1994)، "Feeding mechanisms of Diplodocus"، Gaia، 10: 195–204.
  71. Young؛ Rayfield؛ Holliday؛ Witmer؛ Button؛ Upchurch؛ Barrett (أغسطس 2012)، "Cranial biomechanics of Diplodocus (Dinosauria, Sauropoda): testing hypotheses of feeding behavior in an extinct megaherbivore"، Naturwissenschaften، 99 (8): 637–643، Bibcode:2012NW.....99..637Y، doi:10.1007/s00114-012-0944-y، ISSN 1432-1904، PMID 22790834، S2CID 15109500.
  72. D’Emic؛ Whitlock؛ Smith؛ Fisher؛ Wilson (2013)، Evans, A. R. (المحرر)، "Evolution of high tooth replacement rates in sauropod dinosaurs"، PLOS ONE، 8 (7): e69235، Bibcode:2013PLoSO...869235D، doi:10.1371/journal.pone.0069235، PMC 3714237، PMID 23874921.
  73. Henderson, Donald M. (2006)، "Burly gaits: centers of mass, stability, and the trackways of sauropod dinosaurs"، Journal of Vertebrate Paleontology، 26 (4): 907–921، doi:10.1671/0272-4634(2006)26[907:BGCOMS]2.0.CO;2.
  74. Mallison, H. (2011)، "Rearing Giants – kinetic-dynamic modeling of sauropod bipedal and tripodal poses"، في Farlow, J.؛ Klein, N.؛ Remes, K.؛ Gee, C.؛ Snader, M. (المحررون)، Biology of the Sauropod Dinosaurs: Understanding the life of giants. Life of the Past، Indiana University Press، ISBN 978-0-253-35508-9.
  75. Paul (2017)، "Restoring Maximum Vertical Browsing Reach in Sauropod Dinosaurs"، The Anatomical Record، 300 (10): 1802–1825، doi:10.1002/ar.23617، PMID 28556505.
  76. Cobley, Matthew J.؛ Rayfield, Emily J.؛ Barrett, Paul M. (2013)، "Inter-Vertebral Flexibility of the Ostrich Neck: Implications for Estimating Sauropod Neck Flexibility"، PLOS ONE، 8 (8): e72187، Bibcode:2013PLoSO...872187C، doi:10.1371/journal.pone.0072187، PMC 3743800، PMID 23967284.
  77. Ghose, Tia (15 أغسطس 2013)، "Ouch! Long-Necked Dinosaurs Had Stiff Necks"، livescience.com، مؤرشف من الأصل في 26 نوفمبر 2020، اطلع عليه بتاريخ 31 يناير 2015.
  78. Taylor, M.P. (2014)، "Quantifying the effect of intervertebral cartilage on neutral posture in the necks of sauropod dinosaurs"، PeerJ، 2: e712، doi:10.7717/peerj.712، PMC 4277489، PMID 25551027.
  79. Whitlock؛ Wilson؛ Lamanna (مارس 2010)، "Description of a Nearly Complete Juvenile Skull of Diplodocus (Sauropoda: Diplodocoidea) from the Late Jurassic of North America" (PDF)، Journal of Vertebrate Paleontology، 30 (2): 442–457، doi:10.1080/02724631003617647، S2CID 84498336، مؤرشف من الأصل في 2 أكتوبر 2021.
  80. Senter, P. (2006)، "Necks for Sex: Sexual Selection as an Explanation for Sauropod Neck Elongation"، Journal of Zoology، 271 (1): 45–53، doi:10.1111/j.1469-7998.2006.00197.x.
  81. Taylor, M.P.؛ Hone, D.W.E.؛ Wedel, M.J.؛ Naish, D. (2011)، "The long necks of sauropods did not evolve primarily through sexual selection" (PDF)، Journal of Zoology، 285 (2): 151–160، doi:10.1111/j.1469-7998.2011.00824.x، مؤرشف من الأصل (PDF) في 25 يناير 2021.
  82. Walking on Eggs: The Astonishing Discovery of Thousands of Dinosaur Eggs in the Badlands of Patagonia, by Luis Chiappe and Lowell Dingus. June 19, 2001, Scribner
  83. Grellet-Tinner, Chiappe Coria (2004)، "Eggs of titanosaurid sauropods from the Upper Cretaceous of Auca Mahuevo (Argentina)"، Canadian Journal of Earth Sciences، 41 (8): 949–960، Bibcode:2004CaJES..41..949G، doi:10.1139/e04-049.
  84. Ruxton, Graeme D.؛ Birchard, Geoffrey F.؛ Deeming, D Charles (2014)، "Incubation time as an important influence on egg production and distribution into clutches for sauropod dinosaurs"، Paleobiology، 40 (3): 323–330، doi:10.1666/13028، S2CID 84437615.
  85. Sander, P. M. (2000)، "Long bone histology of the Tendaguru sauropods: Implications for growth and biology"، Paleobiology، 26 (3): 466–488، doi:10.1666/0094-8373(2000)026<0466:lhotts>2.0.co;2، JSTOR 2666121.
  86. Sander, P. M.؛ N. Klein؛ E. Buffetaut؛ G. Cuny؛ V. Suteethorn؛ J. Le Loeuff (2004)، "Adaptive radiation in sauropod dinosaurs: Bone histology indicates rapid evolution of giant body size through acceleration"، Organisms, Diversity & Evolution، 4 (3): 165–173، doi:10.1016/j.ode.2003.12.002.
  87. Sander, P. M.؛ N. Klein (2005)، "Developmental plasticity in the life history of a prosauropod dinosaur"، Science، 310 (5755): 1800–1802، Bibcode:2005Sci...310.1800S، doi:10.1126/science.1120125، PMID 16357257، S2CID 19132660.
  88. Trujillo, K.C.؛ Chamberlain, K.R.؛ Strickland, A. (2006)، "Oxfordian U/Pb ages from SHRIMP analysis for the Upper Jurassic Morrison Formation of southeastern Wyoming with implications for biostratigraphic correlations"، Geological Society of America Abstracts with Programs، 38 (6): 7.
  89. Bilbey, S.A. (1998)، "Cleveland-Lloyd Dinosaur Quarry – age, stratigraphy and depositional environments"، في Carpenter, K.؛ Chure, D.؛ Kirkland, J.I. (المحررون)، The Morrison Formation: An Interdisciplinary Study، Modern Geology 22، Taylor and Francis Group، ص. 87–120، ISSN 0026-7775.
  90. Russell, Dale A. (1989)، An Odyssey in Time: Dinosaurs of North America، Minocqua, Wisconsin: NorthWord Press، ص. 64–70، ISBN 978-1-55971-038-1.
  91. Mateus, Octávio (2006)، "Jurassic dinosaurs from the Morrison Formation (USA), the Lourinhã and Alcobaça Formations (Portugal), and the Tendaguru Beds (Tanzania): A comparison"، في Foster, John R.؛ Lucas, Spencer G. (المحررون)، Paleontology and Geology of the Upper Jurassic Morrison Formation، New Mexico Museum of Natural History and Science Bulletin, 36، Albuquerque, New Mexico: New Mexico Museum of Natural History and Science، ص. 223–231.
  92. Foster, J. (2007). "Appendix." Jurassic West: The Dinosaurs of the Morrison Formation and Their World. Indiana University Press. pp. 327–329.
  93. Chure, Daniel J.؛ Litwin, Ron؛ Hasiotis, Stephen T.؛ Evanoff, Emmett؛ Carpenter, Kenneth (2006)، "The fauna and flora of the Morrison Formation: 2006"، في Foster, John R.؛ Lucas, Spencer G. (المحررون)، Paleontology and Geology of the Upper Jurassic Morrison Formation، New Mexico Museum of Natural History and Science Bulletin, 36، Albuquerque, New Mexico: New Mexico Museum of Natural History and Science، ص. 233–248.
  94. Dodson, P.؛ Behrensmeyer, A.K.؛ Bakker, R.T.؛ McIntosh, J.S. (1980)، "Taphonomy and paleoecology of the dinosaur beds of the Jurassic Morrison Formation"، Paleobiology، 6 (1): 208–232، doi:10.1017/S0094837300025768، JSTOR 240035.
  95. Foster, John R. (2003)، Paleoecological Analysis of the Vertebrate Fauna of the Morrison Formation (Upper Jurassic), Rocky Mountain Region, U.S.A.، New Mexico Museum of Natural History and Science Bulletin, 23، Albuquerque, New Mexico: New Mexico Museum of Natural History and Science، ص. 29.
  96. Carpenter, Kenneth (2006)، "Biggest of the big: a critical re-evaluation of the mega-sauropod Amphicoelias fragillimus"، في Foster, John R.؛ Lucas, Spencer G. (المحررون)، Paleontology and Geology of the Upper Jurassic Morrison Formation، New Mexico Museum of Natural History and Science Bulletin, 36، Albuquerque, New Mexico: New Mexico Museum of Natural History and Science، ص. 131–138.
  97. Bakker, Robert T. (1986)، William Morrow (المحرر)، The Dinosaur Heresies: New Theories Unlocking The Mystery of the Dinosaurs and Their Extinction، New York، ص. 203، ISBN 0140100555.
  98. Pérez García, A. y Sánchez Chillón, B. (2009)، "Historia de Diplodocus carnegii del MNCN: primer esqueleto de dinosaurio montado en la Península Ibérica"، Revista Española de Paleontología، (2): 133–148. {{استشهاد بدورية محكمة}}: Cite journal requires |journal= (مساعدة)صيانة CS1: أسماء متعددة: قائمة المؤلفون (link)
  • بوابة الولايات المتحدة
  • بوابة ديناصورات
  • بوابة علم الأحياء القديمة
  • بوابة علم الأحياء التطوري
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.