مبرهنة ستيوارت

في الهندسة الرياضية، تظهر مبرهنة ستيوارت العلاقة بين أطوال أضلاع مثلث وطول القطعة المستقيمة الواصلة بين رأس من رؤوسه والضلع المقابل لهذا الرأس.[1]

مبرهنة ستيوارت

إذا كانت a, b, c أضلاع مثلث ِABC، وكانت p قطعة مستقيمة من الرأس A إلى نقطة تقسم الضلع a إلى y و x عندها تعطى المبرهنة بالشكل التالي:

البرهان

بتطبيق قانون جيب التمام نجد أن:

و

بضرب المعادلة الأولى بـ x و المعادلة الثانية بـ y ينتج أن:



من خواص دالة الجيب التمام أن:



و لهذا السبب عند جمع المعادلتين سيختفي وسيبقى:


و هو المطلوب.

اقرأ أيضاً

مراجع

  1. "معلومات عن مبرهنة ستيوارت على موقع mathworld.wolfram.com"، mathworld.wolfram.com، مؤرشف من الأصل في 6 نوفمبر 2019.
  • بوابة رياضيات
  • بوابة هندسة رياضية
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.