2023 in arthropod paleontology

2023 in arthropod paleontology is a list of new arthropod fossil taxa, including arachnids, crustaceans, trilobites, and other arthropods (except insects, which have their own list) that were announced or described, as well as other significant arthropod paleontological discoveries and events which occurred in 2023.

List of years in arthropod paleontology
In paleontology
2020
2021
2022
2023
2024
2025
2026
In science
2020
2021
2022
2023
2024
2025
2026
In reptile paleontology
2020
2021
2022
2023
2024
2025
2026
In paleobotany
2020
2021
2022
2023
2024
2025
2026
In paleoentomology
2020
2021
2022
2023
2024
2025
2026
In paleomalacology
2020
2021
2022
2023
2024
2025
2026
In archosaur paleontology
2020
2021
2022
2023
2024
2025
2026
In mammal paleontology
2020
2021
2022
2023
2024
2025
2026
In paleoichthyology
2020
2021
2022
2023
2024
2025
2026

Chelicerates

Arachnids

Name Novelty Status Authors Age Type locality Country Notes Images

Ajkagarypinus[1]

Gen. et sp. nov

Novák et al.

Late Cretaceous (Santonian)

Ajka Coal Formation

 Hungary

A pseudoscorpion belonging to the family Garypinidae. The type species is A. stephani.

Archaeocroton kaufmani[2]

Sp. nov

Valid

Chitimia-Dobler, Mans & Dunlop in Chitimia-Dobler et al.

Cretaceous

Burmese amber

 Myanmar

A hard tick. Announced in 2022; the final article version was published in 2023.

Archaeoscorpiops grossei[3]

Sp. nov

Valid

Lourenço in Lourenço & Velten

Cretaceous

Burmese amber

 Myanmar

A scorpion belonging to the family Palaeoeuscorpiidae.

Arthrolycosa wolterbeeki[4]

Sp. nov

Valid

Dunlop

Carboniferous (Moscovian)

Osnabrück Formation

 Germany

A spider belonging to the family Arthrolycosidae.

Betaburmesebuthus fuscus[5]

Sp. nov

Valid

Xuan, Cai & Huang

Cretaceous

Burmese amber

 Myanmar

A scorpion belonging to the family Palaeoburmesebuthidae.

Betaburmesebuthus villosus[5]

Sp. nov

Valid

Xuan, Cai & Huang

Cretaceous

Burmese amber

 Myanmar

A scorpion belonging to the family Palaeoburmesebuthidae.

Bothriocroton muelleri[2]

Sp. nov

Valid

Chitimia-Dobler, Mans & Dunlop in Chitimia-Dobler et al.

Cretaceous

Burmese amber

 Myanmar

A hard tick. Announced in 2022; the final article version was published in 2023.

Chthonius marusiki[6]

Sp. nov

Turbanov et al.

Eocene

Rovno amber

 Ukraine

A pseudoscorpion, a species of Chthonius.

Cretaceousbuthus petersi[7]

Sp. nov

Valid

Lourenço in Lourenço & Velten

Cretaceous

Burmese amber

 Myanmar

A scorpion belonging to the superfamily Buthoidea.

Crethypoctonus[8]

Gen. et sp. nov

Zhou et al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A member of Uropygi belonging to the family Thelyphonidae. The type species is C. kachinus.

Eognosippus[9]

Gen. et sp. nov

Valid

Dunlop, Erdek & Bartel

Eocene (Lutetian)

Baltic amber

Europe (Baltic Sea region, possibly Kaliningrad Oblast, Russia)

A camel spider. The type species is E. fahrenheitiana.

Eomysmauchenius cretaceominimus[10]

Sp. nov

Peng et al.

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Archaeidae.

Foveacorpus[11]

Gen. et 2 sp. nov

Valid

Bartel, Dunlop & Giribet

Cretaceous

Burmese amber

 Myanmar

A member of Opiliones belonging to the group Cyphophthalmi. Genus includes F. cretaceus and F. parvus.

Leptopsalis breyeri[11]

Sp. nov

Valid

Bartel, Dunlop & Giribet

Cretaceous

Burmese amber

 Myanmar

A member of Opiliones belonging to the family Stylocellidae.

Megamonodontium[12]

Gen. et sp. nov

Valid

McCurry, Frese & Raven

Miocene

McGraths Flat site

 Australia

A spider belonging to the family Barychelidae. The type species is M. mccluskyi.

Mesopsalis[11]

Gen. et sp. nov

Valid

Bartel, Dunlop & Giribet

Cretaceous

Burmese amber

 Myanmar

A member of Opiliones belonging to the group Cyphophthalmi. Genus includes M. oblongus.

Parilisthelyphonus[13]

Gen. et sp. nov

Knecht et al.

Carboniferous (Moscovian)

Rhode Island Formation

 United States
( Massachusetts)

A whip scorpion. The type species is P. bryantae.

Promacrothele[14]

Gen. et sp. nov

Tang, Engel & Yang in Tang et al.

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Macrothelidae. The type species is P. polyacantha.

Protobuthus ziliolii[15]

Sp. nov

Valid

Viaretti, Bindellini & Dal Sasso

Middle Triassic

Besano Formation

 Italy

A scorpion belonging to the superfamily Buthoidea and the family Protobuthidae.

Sirocellus[11]

Gen. et sp. nov

Valid

Bartel, Dunlop & Giribet

Cretaceous

Burmese amber

 Myanmar

A member of Opiliones belonging to the group Cyphophthalmi, with a combination of sironid and stylocellid traits. Genus includes S. iunctus.

Tyrannobunus[16]

Gen. et sp. nov

Valid

Bartel & Dunlop

Cretaceous

Burmese amber

 Myanmar

A eupnoid harvestman. The type species is T. aculeus.

Unguicheylus[17]

Gen. et sp. nov

Valid

Khaustov, Vorontsov & Lindquist

Cretaceous (Albian–Cenomanian)

Taimyr amber

 Russia

A mite belonging to the new family Unguicheylidae, which might belong to the superfamily Anystoidea. The type species is U. quadriocellatus.

Uropodella hoffeinsorum[18]

Sp. nov

Valid

Lindquist & Vorontsov

Eocene

Baltic amber

Usedom

A mite, a species of Uropodella.

Arachnid research

  • New specimens of Compluriscutula vetulum, providing new information on the morphology of this tick, are described from the Cretaceous amber from Myanmar by Chitimia-Dobler et al. (2023).[19]
  • A trigonotarbid arachnid specimen is described from the Carboniferous (Moscovian) Almazna Formation (Donetsk Oblast) by Dunlop & Dernov (2023), extending known distribution of trigonotarbids in Europe.[20]
  • A study on the anatomy and affinities of Geralinura brittanica and Proschizomus petrunkevitchi is published by Garwood & Dunlop (2023), who reinterpret P. petrunkevitchi as a whip scorpion rather than a stem-schizomid.[21]
  • Probable new specimen of Mesoproctus rowlandi, representing the first fossil whip scorpion specimen preserved with book lungs, is described from the Lower Cretaceous Crato Formation (Brazil) by Alberto et al. (2023).[22]
  • The first known male specimen of Strotarchus paradoxus is described from the Miocene Mexican amber by García-Villafuerte & Ibarra-Núñez (2023).[23]
  • A study on the phylogenetic relationships of extant and fossil members of Palpimanoidea is published by Wood & Wunderlich (2023), who interpret their findings as indicative of closer relationships of palpimanoids from the Cretaceous amber from Myanmar with the Gondwanan taxa, and indicative of dispersal of Gondwanan lineages through the Burma Terrane into the Holarctic in the Cretaceous.[24]
  • Richardson, McCurry & Frese (2023) describe fossil material of a member of the genus Simaetha from the Miocene of Australia, interpreted as consistent with the molecular-based studies indicating that the radiation of the astioid jumping spiders at the Oligocene/Miocene transition happened in Australasia.[25]

Eurypterids

Name Novelty Status Authors Age Type locality Country Notes Images

Archopterus[26]

Gen et sp. nov

Valid

Wang et al.

Ordovician

Wenchang Formation

 China

Likely the oldest adelophthalmid.
The type species is A. anjiensis.

Xiphosuran research

  • A study on the evolution of the developmental patterns of xiphosurans is published by Lustri et al. (2023), who find evidence of changes in the allometric growth of xiphosurans related to adaptations to different environments, but also report that the studied changes were relatively minor compared to the diversity of patterns of allometric growth observed in eurypterids and chasmataspidids.[27]
  • Klompmaker et al. (2023) describe a specimen of Limulitella bronnii from the Anisian Muschelkalk sediments of the Vossenveld Formation (Netherlands), extending known temporal range of this species, and provide the diagnosis of L. bronnii for the first time.[28]

Other chelicerates

Crustaceans

Malacostracans

Name Novelty Status Authors Age Type locality Country Notes Images

Albaidaplax[31]

Gen. et sp. nov

Valid

Garassino, Pasini & Castro

Pliocene to early Pleistocene

 Italy
 Spain

A goneplacid crab. The type species is Albaidaplax ispalensis. Announced in 2013;[32] validated in 2023.

Annieporcellana paleocenica[33]

Sp. nov

Valid

Yost, Feldmann & Schweitzer

Paleocene

Kambühel Formation

 Austria

A member of Galatheoidea belonging to the family Catillogalatheidae.

Bahiacaris[34]

Gen. et comb. nov

Valid

Schweitzer et al.

Early Cretaceous (Aptian)

 Brazil

A caridean shrimp; a new genus for "Atyoida" roxoi Beurlen (1950). Announced in 2019;[35] validated in 2023.

Bechleja brevirostris[36]

Sp. nov

Valid

De Mazancourt, Wappler & Wedmann

Eocene

Messel pit

 Germany

Possibly a member of the family Palaemonidae. Announced in 2022; the correction including evidence of registration in ZooBank was published in 2023.[37]

Bericorystes[38]

Gen. et sp. nov

Valid

De Angeli

Eocene

 Italy

A crab belonging to the family Corystidae. The type species is B. caporiondoi.

Braggicarpilius wanzenboecki[39]

Sp. nov

Valid

Miller, Schweitzer & Feldmann

Paleocene

Kambühel Formation

 Austria

A crab belonging to the family Carpiliidae.

Callianassa ocozocoautlaensis[40]

Sp. nov

Valid

Hyžný, Vega & Coutiño

Late Cretaceous (Maastrichtian)

Ocozocoautla Formation

 Mexico

A member of Callianassidae, a species of Callianassa (sensu lato). Announced in 2013;[41] validated in 2023.

Campanaxius[42]

Gen. et sp. nov

Valid

Nyborg, Hyžný & Haggart

Late Cretaceous (Campanian)

Cedar District Formation

 United States
( Washington)

A member of Axiidea. The type species is C. raffi.

Cherusius marangoni[38]

Sp. nov

Valid

De Angeli

Eocene

 Italy

A crab belonging to the family Domeciidae.

Chronocancer[43]

Gen. et sp. nov

Valid

Santana et al.

Early Cretaceous (Aptian-Albian)

Romualdo Formation

 Brazil

A crab, probably a member of the family Orithopsidae. The type species is C. camilosantanai. Announced in 2022 in an online-only journal, and the publication did not include a ZooBank registration number;[44] validated in 2023.

Corystites orgianensis[38]

Sp. nov

Valid

De Angeli

Eocene

 Italy

A crab belonging to the family Corystidae.

Costacopluma squiresi[45]

Sp. nov

Valid

Nyborg, Vega & Filkorn

Paleocene

Santa Susana Formation

 United States
( California)

A retroplumid crab. Announced in 2009;[46] validated in 2023.

Cretacocalcinus fortis[47]

Sp. nov

Ferratges & Zamora in García-Penas et al.

Early Cretaceous

Maestrazgo Basin

 Spain

A hermit crab.

Cretalamoha[48]

Gen. et sp. nov

Valid

Nyborg, Garassino & Vega

Late Cretaceous (Campanian)

Pender Formation

 Canada
( British Columbia)

A member of Homolidae. The type species is C. boweni. Announced in 2017;[49] validated in 2023.

Cugocaris[50]

Gen. et sp. nov

Valid

Liu et al.

Silurian

Fentou Formation

 China

A member of Phyllocarida belonging to the group Archaeostraca. Genus includes new species C. future.

Dardanus cyprioticus[51]

Sp. nov

Valid

Wallaard et al.

Miocene (Serravallian-Messinian)

Pakhna Formation

 Cyprus

A species of Dardanus.

Dardanus plevrotos[51]

Sp. nov

Valid

Wallaard et al.

Miocene (Serravallian-Messinian)

Pakhna Formation

 Cyprus

A species of Dardanus.

Diaulax rosablanca[52]

Sp. nov

Valid

Gómez-Cruz, Bermúdez & Vega

Early Cretaceous (Valanginian)

Rosablanca Formation

 Colombia

A dromioid crab. Announced in 2015;[53] validated in 2023.

Dinocarcinus[54]

Gen. et sp. nov

Valid

Van Bakel et al.

Late Cretaceous (late Campanian)

 France

A crab, a member of Portunoidea sensu lato. The type species is D. velauciensis. Announced in 2019;[55] validated in 2023.

Dromiopsis aedicula[39]

Sp. nov

Valid

Miller, Schweitzer & Feldmann

Paleocene

Kambühel Formation

 Austria

A crab belonging to the family Dromiidae.

Dromiopsis bullamelga[39]

Sp. nov

Valid

Miller, Schweitzer & Feldmann

Paleocene

Kambühel Formation

 Austria

A crab belonging to the family Dromiidae.

Dubiostenopus[56]

Gen. et sp. nov

Valid

Alencar et al.

Early Cretaceous (Aptian-Albian)

Romualdo Formation

 Brazil

A member of Stenopodidea of uncertain affinities. The type species is D. parvus.

Enoploclytia tepeyacensis[57]

Sp. nov

Valid

Vega, Garassino & Zapata-Jaime

Late Cretaceous (Campanian)

 Mexico

An erymid, a species of Enoploclytia. Announced in 2013;[58] validated in 2023.

Eobooralana[59]

Gen. et comb. nov

Schädel, Nagler & Hyžný

Middle Jurassic (Callovian)

 France

An isopod belonging to the group Scutocoxifera. The type species is "Urda" rhodanica Van Straelen (1928).

Eomunidopsis kinokunica[60]

Sp. nov

Valid

Karasawa, Ohara & Kato

Early Cretaceous (Barremian)

Arida Formation

 Japan

A member of the family Galatheidae. Announced in 2008 in an online-only journal, prior to electronic-only publications being allowed under ICZN; validated in 2023.[60]

Eoparanaxia[61]

Gen. et sp. nov

Valid

Ferratges et al.

Eocene

Pamplona Marls Formation

 Spain

A crab belonging to the family Epialtidae and the subfamily Pisinae. The type species is E. eocenica.

Eryma nippon[60]

Sp. nov

Valid

Karasawa, Ohara & Kato

Early Cretaceous (Barremian)

Arida Formation

 Japan

Announced in 2008 in an online-only journal, prior to electronic-only publications being allowed under ICZN; validated in 2023.[60]

Gladiocaris[62]

Gen. et comb. nov

Valid

Garassino et al.

Middle Triassic

Trochitenkalk Formation

 Germany

A member of the family Penaeidae. Genus includes "Antrimpos" germanicus Brandt & Schulz (2013)

Glyphea pisuergae[63]

Sp. nov

Charbonnier, Garassino & López-Horgue

Early Jurassic (PliensbachianToarcian)

 Spain

Gonatocaris wuhanensis[50]

Sp. nov

Valid

Liu et al.

Silurian

Fentou Formation

 China

A member of Phyllocarida belonging to the group Archaeostraca.

Hepatus beurleni[64]

Nom. nov

Valid

Lima et al.

Miocene

Pirabas Formation

 Brazil

A species of Hepatus; a replacement name for Cyclocancer tuberculatus Beurlen (1958).

Hoploparia natsumiae[60]

Sp. nov

Valid

Karasawa, Ohara & Kato

Early Cretaceous (Barremian)

Arida Formation

 Japan

Announced in 2008 in an online-only journal, prior to electronic-only publications being allowed under ICZN; validated in 2023.[60]

Jaliscosphaera[65]

Gen. et sp. nov

García-Vázquez, Alvarado-Ortega & Vega

Pliocene

 Mexico

An isopod belonging to the family Sphaeromatidae. The type species is J. pliocenica.

Laeviprosopon ewakrzeminskae[66]

Sp. nov

Valid

Starzyk et al.

Late Jurassic (Tithonian)

Ernstbrunn Formation

 Austria

A crab belonging to the family Homolidae.

Laeviprosopon joecollinsi[66]

Sp. nov

Valid

Starzyk et al.

Late Jurassic (Oxfordian)

 Poland

A crab belonging to the family Homolidae.

Laeviprosopon lanceatum[66]

Sp. nov

Valid

Starzyk et al.

Late Jurassic (Oxfordian)

 Poland

A crab belonging to the family Homolidae.

Litorepagurus[67]

Gen. et sp. nov

Valid

Fraaije et al.

Early Cretaceous (Albian)

 France

A hermit crab. Genus includes new species L. wissantensis.

Meroncarcinus[68]

Gen. et sp. nov

In press

Van Bakel & Guinot

Middle Jurassic (Callovian)

 France

A crab belonging to the family Glaessneropsidae. The type species is M. boursicoti.

Mesolambrus vallionensis[38]

Sp. nov

Valid

De Angeli

Eocene

 Italy

A crab belonging to the family Parthenopidae.

Metanephrops serendipitus[69]

Sp. nov

Valid

Gašparič et al.

Miocene

 Slovenia

A species of Metanephrops. Announced in 2021;[70] validated in 2023.

Meyeria hurtrelleorum[71]

Sp. nov

Valid

Charbonnier et al.

Late Jurassic (Oxfordian)

 France

A member of the family Mecochiridae.

Miohepatus amazonicus[64]

Comb. nov

Valid

Lima et al.

Miocene

Pirabas Formation

 Brazil

A crab belonging to the family Aethridae. Moved from Hepatella amazonica Beurlen (1958). The type species of the new genus Miohepatus, which also includes extant species Miohepatus peruvianus (originally Hepatella peruviana Rathbun, 1933)

Necrocarcinus gorbenkoi[72]

Sp. nov

Valid

Mychko et al.

Late Cretaceous (Cenomanian)

Lyamino Formation

 Russia
( Moscow Oblast)

A crab belonging to the group Raninoida.

Ophthalmoplax andina[73]

Sp. nov

Valid

Guzmán et al.

Late Cretaceous (Campanian)

Lodolitas de Aguacaliente Formation

 Colombia

A member of Macropipidae, a species of Ophthalmoplax. Announced in 2016;[74] validated in 2023.

Oregonina[75]

Gen. et comb. nov

Valid

Nyborg, Garassino & Nyborg

Eocene
Middle Eocene

Yamhill Formation

 United States
( Oregon)

A lyreidid crab.
The type species is "Macroacaena" leucosiae (Rathbun, 1932)

Ostenosculda[76]

Gen. et sp. nov

Valid

Braig et al.

Early Jurassic
(Sinemurian)

 Italy

A mantis shrimp belonging to the group Unipeltata. The type species is O. teruzzii.

Paguristes timoni[77]

Sp. nov

Valid

Wallaard et al.

Miocene
(Tortonian)

St. Marys Formation

 United States
( Maryland)

A hermit crab, a species of Paguristes.

Pagurus hazenorum[77]

Sp. nov

Valid

Wallaard et al.

Miocene
(Tortonian)

St. Marys Formation

 United States
( Maryland)

A hermit crab, a species of Pagurus.

Palaega yamadai[60]

Sp. nov

Valid

Karasawa, Ohara & Kato

Early Cretaceous (Barremian)

Arida Formation

 Japan

An isopod belonging to the family Cirolanidae. Announced in 2008 in an online-only journal, prior to electronic-only publications being allowed under ICZN; validated in 2023.[60]

Palaeodromites pimientai[47]

Sp. nov

Ferratges & Zamora in García-Penas et al.

Early Cretaceous

Maestrazgo Basin

 Spain

A crab.

Palaeosynaxes[78]

Gen. et sp. nov

Valid

Fraaije et al.

Late Jurassic (Oxfordian)

 Poland

A furry lobster. The type species is P. montserratae.

Paromola roseburgensis[79]

Sp. nov

Valid

Nyborg, Garassino & Vega

Early Eocene

Roseburg Formation

 United States

A member of Homolidae. Announced in 2017;[49] validated in 2023.

Percnon paleogenicus[38]

Sp. nov

Valid

De Angeli

Eocene

 Italy

A species of Percnon.

Petersbuchia[80]

Gen. et sp. nov

Valid

Schweigert

Late Jurassic (Kimmeridgian)

Treuchtlingen Formation

 Germany

A crab belonging to the group Homolodromioidea and the family Prosopidae. The type species is P. thauckei. Announced in 2021 in an online-only journal;[81] validated in 2023.[80]

Petrolisthes mitseroensis[51]

Sp. nov

Valid

Wallaard et al.

Miocene (Serravallian-Messinian)

Pakhna Formation

 Cyprus

A species of Petrolisthes.

Phrynolambrus sagittalis[82]

Sp. nov

Valid

Ferratges et al.

Eocene

Pamplona Formation

 Spain

A crab belonging to the family Parthenopidae and the subfamily Dairoidinae.

Planobranchia elongata[61]

Sp. nov

Valid

Ferratges et al.

Eocene

Pamplona Marls Formation

 Spain

A crab belonging to the family Epialtidae and the subfamily Pisinae.

Protomunida kambuehelensis[33]

Sp. nov

Valid

Yost, Feldmann & Schweitzer

Paleocene

Kambühel Formation

 Austria

A member of the family Munididae.

Pseudoglyphea anisica[83]

Sp. nov

Valid

Pasini, Garassino & Charbonnier

Middle Triassic (Anisian)

 Italy

A litogastrid lobster.

Somalis[84]

Gen. et sp. nov

Valid

Barros & de Oliveira

Early Cretaceous (Aptian-Albian)

Romualdo Formation

 Brazil

A member of Penaeoidea. The type species is S. piauiensis.

Soomicaris ordosensis[85]

Sp. nov

Liu et al.

Ordovician

Lashizhong Formation

 China

A member of Phyllocarida belonging to the group Archaeostraca and the family Caryocarididae.

Spinirostrimaia echinata[61]

Sp. nov

Valid

Ferratges et al.

Eocene

Pamplona Marls Formation

 Spain

A crab belonging to the family Majidae.

Squamipelta[33]

Gen. et sp. nov

Valid

Yost, Feldmann & Schweitzer

Paleocene

Kambühel Formation

 Austria

A hermit crab belonging to the family Annuntidiogenidae. The type species is S. insecta.

Tanaidaurum[86]

Gen. et sp. nov

Valid

Pazinato, Müller & Haug

Cretaceous

Burmese amber

 Myanmar

A member of Tanaidacea. The type species is T. kachinensis.

Tanidromites maerteni[87]

Sp. nov

Valid

Fraaije et al.

Middle Jurassic (Bajocian)

 France

A tanidromitid crab. Announced in 2013;[88] validated in 2023.

Triassosculda[89]

Gen. et sp. nov

Valid

Smith, Charbonnier, Fara & Brayard in Smith et al.

Early Triassic

Thaynes Group

 United States
( Idaho)

A mantis shrimp belonging to the group Unipeltata. The type species is T. ahyongi.

Trichopeltarion ryouheii[90]

Sp. nov

Valid

Kato in Kato et al.

Miocene

Kosho Formation

 Japan

A member of the family Trichopeltariidae.

Urda buechneri[59]

Sp. nov

Schädel, Nagler & Hyžný

Middle Jurassic (Bajocian)

 Germany

An isopod belonging to the group Scutocoxifera.

Urda stemmerbergensis[59]

Comb. nov

(Malzahn)

Early Cretaceous (Hauterivian)

 Germany

An isopod belonging to the group Scutocoxifera. Moved from "Palaega" stemmerbergensis Malzahn (1968).

Urda suevica[59]

Comb. nov

(Reiff)

Early Jurassic (Pliensbachian)

Amaltheenton Formation

 Germany

An isopod belonging to the group Scutocoxifera. Moved from "Palaega" suevica Reiff (1936).

Verrucarcinus marsae[68]

Sp. nov

In press

Van Bakel & Guinot

Middle Jurassic (Callovian)

 France

A crab belonging to the family Glaessneropsidae.

Viapagurus[47]

Gen. et comb. nov

Ferratges & Zamora in García-Penas et al.

Early Cretaceous

Maestrazgo Basin

 Spain

A hermit crab. The type species is "Pagurus" avellanedai Vía (1951).

Vilsercarcinus[68]

Gen. et sp. nov

In press

Van Bakel & Guinot

Jurassic (Toarcian-Callovian)

Austria-Germany border area

A crab belonging to the family Glaessneropsidae. The type species is V. keuppi.

Xanthosia sakoi[60]

Sp. nov

Valid

Karasawa, Ohara & Kato

Early Cretaceous (Barremian)

Arida Formation

 Japan

A member of the family Etyidae. Announced in 2008 in an online-only journal, prior to electronic-only publications being allowed under ICZN; validated in 2023.[60]

Malacostracan research

  • Chény, Charbonnier & Audo (2023) reexamine the fossil record of lobsters from the Middle Jurassic of Normandy (France), providing evidence of the presence of sexual dimorphism in Glyphea dressieri and proposing the first reconstruction of this lobster.[91]
  • Putative hypothalassiid Lathahypossia aculeata is reinterpreted as a xanthid by Ossó & Ng (2023).[92]
  • A specimen of Araripenaeus timidus with a swelling on its carapace which might be indicative of infestation by bopyrid isopods is described from the Lower Cretaceous Romualdo Formation (Brazil) by Lima et al. (2023), representing the oldest evidence of parasitism in marine dendrobranchiate shrimps reported to date.[93]
  • A study on the extinction and survival of the decapod crustacean groups during the Cretaceous–Paleogene extinction event is published by Schweitzer & Feldmann (2023).[94]

Ostracods

Name Novelty Status Authors Age Type locality Country Notes Images

Acratia xinjiangensis[95]

Sp. nov

Luo et al.

Carboniferous (Pennsylvanian)

 China

Aechmina iwatensis[96]

Sp. nov

Valid

Tanaka

Carboniferous (Pennsylvanian)

Nagaiwa Formation

 Japan

Bairdia dukanensis[97]

Sp. nov

Valid

Hawramy, Al-Obidee & Aziz

Late Cretaceous

Shiranish Formation

 Iraq

A member of the family Bairdiidae.

Bairdoppilata shiranishensis[97]

Sp. nov

Valid

Hawramy, Al-Obidee & Aziz

Late Cretaceous

Shiranish Formation

 Iraq

A member of the family Bairdiidae.

Bungonibeyrichia treslata[98]

Sp. nov

In press

Camilleri, Weldon & Warne

Devonian (Emsian)

Woori Yallock Formation

 Australia

A member of Palaeocopida belonging to the group Beyrichicopina and the family Craspedobolbinidae.

Buntonia whittakerensis[99]

Sp. nov

Valid

Khosla et al.

Late Cretaceous-Paleocene transition

Deccan Intertrappean Beds

 India

Calocaria callundosa[100]

Sp. nov

Perrier et al.

Silurian (Přídolí)

 Spain

A myodocope ostracod.

Cutympanum[101]

Gen. et sp. nov

In press

Williams et al.

Silurian

Si Ka Formation

 Vietnam

A glossomorphitine hollinoidean ostracod. Genus includes new species C. hagiangensis.

Cyprideis calchaquiensis[102]

Sp. nov

Valid

Zamudio & Carignano

Miocene

 Argentina

A member of the family Cytherideidae.

Cyprideis qattaraensis[103]

Sp. nov

Shahin, El Khawagah & Shahin

 Egypt

Cytheropteron tesakovae[104]

Sp. nov

Karpuk

Early Cretaceous (Barremian–Aptian)

Crimea

A member of Podocopida belonging to the family Paradoxostomatidae. The specific name is shared with Cytheropteron tesakovae Kempf (2011).

Damonella medialtis[105]

Sp. nov

Valid

Santos Filho et al.

Early Cretaceous

 Brazil

Healdia ofunatensis[96]

Sp. nov

Valid

Tanaka

Carboniferous (Pennsylvanian)

Nagaiwa Formation

 Japan

Healdia rikutyuensis[96]

Sp. nov

Valid

Tanaka

Carboniferous (Pennsylvanian)

Nagaiwa Formation

 Japan

Healdianella shiqianensis[95]

Sp. nov

Luo et al.

Carboniferous (Pennsylvanian)

 China

Hornibrookella nudosa[97]

Sp. nov

Valid

Hawramy, Al-Obidee & Aziz

Late Cretaceous

Shiranish Formation

 Iraq

A member of the family Hemicytheridae.

Ideluralia[106]

Nom. nov

Valid

Antonietto & Brandão

Devonian

 Russia

A member of the family Bairdiidae; a replacement name for Bairdiella Egorova (1960).

Jordanites michinokuensis[96]

Sp. nov

Valid

Tanaka

Carboniferous (Pennsylvanian)

Nagaiwa Formation

 Japan

Limnocythere martensi[99]

Sp. nov

Valid

Khosla et al.

Late Cretaceous-Paleocene transition

Deccan Intertrappean Beds

 India

A species of Limnocythere.

Liuzhinia phetchabunensis[107]

Sp. nov

Forel & Chitnarin

Permian

 Thailand

Looneyellopsis? sagittensis[105]

Sp. nov

Valid

Santos Filho et al.

Early Cretaceous

 Brazil

Microceratina andreui[108]

Sp. nov

Valid

Cabral & Lord in Danielopol et al.

Early and Middle Jurassic (Toarcian and Aalenian)

São Gião Formation

 Portugal

A member of the family Cytheruridae.

Monspopulus[101]

Gen. et sp. nov

In press

Williams et al.

Silurian

Si Ka Formation

 Vietnam

A sigmoopsine hollinoidean ostracod. Genus includes new species M. amicus.

Neomonoceratina farasensis[103]

Sp. nov

Shahin, El Khawagah & Shahin

 Egypt

Pattersoncypris trapezium[105]

Sp. nov

Valid

Santos Filho et al.

Early Cretaceous

 Brazil

Platyrhomboides japonica[96]

Sp. nov

Valid

Tanaka

Carboniferous (Pennsylvanian)

Nagaiwa Formation

 Japan

Platyrhomboides tohokuensis[96]

Sp. nov

Valid

Tanaka

Carboniferous (Pennsylvanian)

Nagaiwa Formation

 Japan

Pseudobythocypris asiatica[96]

Sp. nov

Valid

Tanaka

Carboniferous (Pennsylvanian)

Nagaiwa Formation

 Japan

Pseudobythocypris siveteri[96]

Sp. nov

Valid

Tanaka

Carboniferous (Pennsylvanian)

Nagaiwa Formation

 Japan

Pseudobythocypris zipangu[96]

Sp. nov

Valid

Tanaka

Carboniferous (Pennsylvanian)

Nagaiwa Formation

 Japan

Thuringobolbina ikeyai[96]

Sp. nov

Valid

Tanaka

Carboniferous (Pennsylvanian)

Nagaiwa Formation

 Japan

Zonocypris penchi[99]

Sp. nov

Valid

Khosla et al.

Late Cretaceous-Paleocene transition

Deccan Intertrappean Beds

 India

Thecostracans

Name Novelty Status Authors Age Type locality Country Notes Images

Eolepas carniensis[109]

Sp. nov

Valid

Gale et al.

Late Triassic (Carnian)

Grabfeld Formation

 Germany

A barnacle belonging to the family Eolepadidae.

Protochelonibia hermani[110]

Sp. nov

Valid

Gale in De Schutter et al.

Oligocene (Rupelian)

Boom Formation

 Belgium

A barnacle belonging to the family Chelonibiidae.

Other crustaceans

Name Novelty Status Authors Age Type locality Country Notes Images

Carapacestheria cangshanensis[111]

Sp. nov

In press

Li

Late Jurassic

Penglaizhen Formation

 China

A clam shrimp.

Malayacyclus[112]

Gen. et sp. nov

Valid

Tang et al.

Carboniferous (Viséan)

 Malaysia

A member of Cyclida. Genus includes new species M. terengganuensis. Announced in 2021;[113] validated in 2023.

Insects

Megacheirians

Name Novelty Status Authors Age Type locality Country Notes Images

Radiodonts

Name Novelty Status Authors Age Type locality Country Notes Images

Anomalocaris daleyae[114]

Sp. nov

Valid

Paterson, García-Bellido & Edgecombe

Cambrian Stage 4

Emu Bay Shale

 Australia

Echidnacaris[114]

Gen. et comb. nov

Valid

Paterson, García-Bellido & Edgecombe

Cambrian Stage 4

Emu Bay Shale

 Australia

A member of the family Tamisiocarididae. The type species is "Anomalocaris" briggsi Nedin (1995).

Guanshancaris[115]

Gen. et comb. nov

Zhang et al.

Cambrian Stage 4

Wulongqing Formation

 China

An amplectobeluid radiodont. The type species is "Anomalocaris" kunmingensis Wang, Huang & Hu (2013).

Pseudoangustidontus izdigua[116]

Sp. nov

Valid

Potin, Gueriau & Daley

Ordovician (Tremadocian)

Fezouata Formation

 Morocco

A suspension feeding hurdiid radiodont within new subfamily Aegirocassisinae.

Radiodont research

  • A study on molting patterns and ontogeny in Stanleycaris is published by Moysiuk & Caron (2023), who find evidence for two distinct fossil types of Stanleycaris (carcasses and molted exoskeletal remains), interpret their findings as confirming that radiodonts grew by periodic ecdysis, and consider the general pattern of molting in Stanleycaris to be likely shared with other radiodonts and possibly with other early arthropods.[117]
  • A study on the functional capabilities and hydrodynamic performance of the frontal appendages of Anomalocaris canadensis is published by Bicknell et al. (2023), who interpret their findings as indicating that A. canadensis targeted soft-bodied prey.[118]

Trilobites

Name Novelty Status Authors Age Type locality Country Notes Images

Anderssonella undulata[119]

Sp. nov

Valid

Wernette & Hughes in Wernette et al.

Cambrian (Furongian)

Ao Mo Lae Formation

 Thailand

A member of Asaphida belonging to the family Dikelocephalidae.

Arisemolobes[120]

Gen. et sp. nov

Valid

Ingham & Fortey

Ordovician

Charchaq Group

 China

A member of Asaphida belonging to the group Cyclopygoidea and the family Ellipsotaphridae. Genus includes new species A. zhouzhiyii.

Asaphellus charoenmiti[119]

Sp. nov

Valid

Wernette & Hughes in Wernette et al.

Ordovician (Tremadocian)

Talo Wao Formation

 Thailand

A member of the family Asaphidae.

Asaphellus zheni[121]

Sp. nov

In press

Smith & Allen

Ordovician (Floian)

Nambeet Formation

 Australia

A member of the family Asaphidae.

Bainella (Belenops) sulmatogrossensis[122]

Sp. nov

Kerber et al.

Devonian

 Brazil

Buttsia trema[123]

Sp. nov

Valid

Westrop & Eoff

Cambrian (Jiangshanian)

Shallow Bay Formation

 Canada
( Newfoundland and Labrador)

Catinouyia heyunensis[124]

Sp. nov

Valid

Sun et al.

Cambrian Stage 4

Burgasutay Formation

 Mongolia

Caznaia imsamuti[119]

Sp. nov

Valid

Wernette & Hughes in Wernette et al.

Cambrian (Furongian)

Ao Mo Lae Formation

 Thailand

A member of Asaphida belonging to the family Dikelocephalidae.

Circulocrania ? dichaulax[120]

Sp. nov

Valid

Ingham & Fortey

Ordovician

Myoch Formation

 United Kingdom

Corbinia perforata[119]

Sp. nov

Valid

Wernette & Hughes in Wernette et al.

Ordovician (Tremadocian)

Talo Wao Formation

 Thailand

A member of the family Eurekiidae.

Crassibole kore[125]

Sp. nov

Valid

Müller & Hahn

Carboniferous (Viséan)

Hillershausen Formation

 Germany

Dianops kaufmannii[126]

Sp. nov

Valid

Basse & Lemke

Devonian (Famennian)

Wocklum Limestone

 Germany

Funeralaspis[127]

Gen. et sp. nov

Valid

Adrain & Pérez-Peris

Ordovician (Dapingian)

Antelope Valley Limestone

 United States
( California)

An odontopleurine trilobite. The type species is F. deathvalleyensis.

Jiia talowaois[119]

Sp. nov

Valid

Wernette & Hughes in Wernette et al.

Ordovician (Tremadocian)

Talo Wao Formation

 Thailand

A member of Asaphida belonging to the family Remopleurididae.

Karslanus leishuae[128]

Sp. nov

Peng et al.

Cambrian (Guzhangian)

Longha Formation

 China

Leishuia[129]

Gen. et sp. nov

In press

Peng et al.

Cambrian (Guzhangian)

Longha Formation

 China

A dameselloid trilobite. Genus includes new species L. leishuae.

Lophosaukia nuchanongi[119]

Sp. nov

Valid

Wernette & Hughes in Wernette et al.

Cambrian (Furongian)

Ao Mo Lae Formation

 Thailand

A member of Asaphida belonging to the family Dikelocephalidae.

Madiganaspis lauriei[121]

Sp. nov

In press

Smith & Allen

Ordovician (Floian)

Nambeet Formation

 Australia

A member of the family Asaphidae.

Mitroplax[130]

Gen. et comb. nov

Valid

Holloway

Devonian (Pragian to Emsian)

Norton Gully Sandstone

 Australia

A scutelluid trilobite. The type species is "Bronteus" enormis Etheridge (1894).

Monocheilus reginae[131]

Sp. nov

Valid

Blackwell & Westrop

Cambrian (Jiangshanian)

Honey Creek Formation

 United States
( Oklahoma)

A member of the family Eurekiidae.

Monocheilus richardi[131]

Sp. nov

Valid

Blackwell & Westrop

Cambrian (Jiangshanian)

Honey Creek Formation

 United States
( Oklahoma)

A member of the family Eurekiidae.

Norasaphus (Norasaphus) jagoi[121]

Sp. nov

In press

Smith & Allen

Ordovician (Floian)

Nambeet Formation

 Australia

A member of the family Asaphidae.

Olenoides proa[132]

Comb. nov

(Rusconi)

Cambrian (Guzhangian)

 Argentina

Moved from Cancapolia proa Rusconi (1954).

Omegops honggulelengensis[133]

Sp. nov

Junior synonym

Zong

Devonian (Famennian)

 China

A phacopid trilobite. Subsequently considered to be a junior synonym of Omegops mobilis (Xiang, 1981) by Zong (2023).[134]

Omegops xiangi[133]

Sp. nov

Junior synonym

Zong

Devonian (Famennian)

 China

A phacopid trilobite. Subsequently considered to be a junior synonym of Clarksonops junggariensis Crônier in Crônier and Waters (2022) by Zong (2023), resulting in a new combination Omegops junggariensis.[134]

Oryctocephalus doliiformis[135]

Sp. nov

Valid

Korovnikov

Cambrian

Kuonamka Formation

 Russia
( Sakha)

Oryctocephalus molodoensis[135]

Sp. nov

Valid

Korovnikov

Cambrian

Kuonam formation

 Russia
( Sakha)

Pagodia? uhleini[119]

Sp. nov

Valid

Wernette & Hughes in Wernette et al.

Cambrian (Furongian)

Ao Mo Lae Formation

 Thailand

A member of Corynexochida belonging to the group Leiostegiina and the family Leiostegiidae.

Plesiowensus erraticus[136]

Sp. nov

Valid

Basse & Schöning

Silurian

 Germany

A member of the family Proetidae.

Pseudokoldinioidia maneekuti[119]

Sp. nov

Valid

Wernette & Hughes in Wernette et al.

Cambrian (Furongian)

Ao Mo Lae Formation

 Thailand

A member of Corynexochida belonging to the group Leiostegiina and the family Missisquoiidae.

Ptychaspis matuszaki[131]

Sp. nov

Valid

Blackwell & Westrop

Cambrian (Jiangshanian)

Fort Sill Formation

 United States
( Oklahoma)

A member of the family Ptychaspididae.

Ptychaspis occulta[131]

Sp. nov

Valid

Blackwell & Westrop

Cambrian

Wilberns Formation

 United States
( Texas)

A member of the family Ptychaspididae.

Pulcherproetus brandenborchnova[136]

Sp. nov

Valid

Basse & Schöning

Silurian

 Germany

A member of the family Proetidae.

Pulcherproetus inexspectatus[136]

Sp. nov

Valid

Basse & Schöning

Silurian

 Germany

A member of the family Proetidae.

Pulcherproetus laerheidensis[136]

Sp. nov

Valid

Basse & Schöning

Silurian

 Germany

A member of the family Proetidae.

Pulcherproetus maennilae[136]

Sp. nov

Valid

Basse & Schöning

Silurian

 Estonia

A member of the family Proetidae.

Pulcherproetus schranki[136]

Sp. nov

Valid

Basse & Schöning

Silurian

 Germany

A member of the family Proetidae.

Pulcherproetus sutherbergensis[136]

Sp. nov

Valid

Basse & Schöning

Silurian

 Germany

A member of the family Proetidae.

Pulcherproetus trachyglossus[136]

Sp. nov

Valid

Basse & Schöning

Silurian

 Germany

A member of the family Proetidae.

Rabienops borkewehrensis[126]

Sp. nov

Basse & Lemke

Devonian (Famennian)

Wocklum Limestone

 Germany

A member of the family Phacopidae. Basse & Lemke (2023) did not exclude the possibility of the synonymy with R. evae.[126]

Rabienops dxv[126]

Sp. nov

Basse & Lemke

Devonian (Famennian)

Wocklum Limestone

 Germany

A member of the family Phacopidae. Basse & Lemke (2023) did not exclude the possibility of the synonymy with R. evae.[126]

Rodingaia leggi[121]

Sp. nov

In press

Smith & Allen

Ordovician (Floian)

Nambeet Formation

 Australia

A member of the family Asaphidae.

Sanbernardaspis excalibur[121]

Sp. nov

In press

Smith & Allen

Ordovician (Tremadocian)

Nambeet Formation

 Australia

A member of the family Asaphidae.

Signatoproetus[136]

Gen. et sp. nov

Valid

Basse & Schöning

Silurian

 Germany

A member of the family Proetidae. Genus includes new species S. wiedae.

Spinicryphops wocklumeriae[126]

Comb. nov

Valid

(Richter & Richter)

Devonian (Famennian)

Wocklum Limestone

 Germany

A member of the family Phacopidae. Moved from Phacops (Cryphops?) wocklumeriae Richter & Richter (1926).

Synaptotaphrus[120]

Gen. et sp. nov

Valid

Ingham & Fortey

Ordovician

Myoch Formation

 United Kingdom

A member of Asaphida belonging to the group Cyclopygoidea and the family Ellipsotaphridae. Genus includes new species S. oarion.

Tarutaoia[119]

Gen. et sp. nov

Valid

Wernette & Hughes in Wernette et al.

Ordovician (Tremadocian)

Talo Wao Formation

 Thailand

A member of Asaphida belonging to the family Remopleurididae. The type species is T. techawani.

Triorygma[123]

Gen. et sp. nov

Valid

Westrop & Eoff

Cambrian (Jiangshanian)

Shallow Bay Formation

 Canada
( Newfoundland and Labrador)

Genus includes new species T. burkhalteri.

Tsinania sirindhornae[119]

Sp. nov

Valid

Wernette & Hughes in Wernette et al.

Cambrian (Furongian)

Ao Mo Lae Formation

 Thailand

A member of Corynexochida belonging to the group Illaenina and the family Tsinaniidae.

Vandergrachtia vandergrachtii carsteni[125]

Ssp. nov

Valid

Müller & Hahn

Carboniferous (Viséan)

Hillershausen Formation

 Germany

Veeversaspis[121]

Gen. et sp. nov

In press

Smith & Allen

Ordovician (Tremadocian)

Nambeet Formation

 Australia

A member of the family Bathyuridae. The type species is V. jelli.

Trilobite research

  • A study on the timing of the appearance of trilobite planktic larvae is published Laibl, Saleh & Pérez-Peris (2023), who interpret their findings as indicating that Cambrian ecosystems were dominated by trilobites with exclusively benthic early post-embryonic stages, and that a progressive increase in the number of trilobite taxa that incorporated planktic stages in their development happened between the Miaolingian and the Middle Ordovician.[137]
  • A study on the disparity of trilobite cephalic structures across Cambrian Series 2, providing evidence that the development of disparity of various cephalic structures was constrained in different ways, is published by Holmes (2023).[138]
  • A study on the morphology and evolutionary relationships of Duyunaspis duyunensis, D. jianheensis and Balangia balangensis from the Cambrian Balang and Tsinghsutung formations (China) is published by Chen et al. (2023), who report evidence of gradual evolution indicative that Balangia was more likely to be an ancestor of Duyunaspis rather than its descendant.[139]
  • Taxonomic revision of the species belonging to the genus Abadiella is published by Wang, Peng & Zhang (2023), who consider Parabadiella, Guangyuanaspis and Parabadiella (Danangouia) to be junior junior synonyms of Abadiella, and consider the species A. huoi and A. bourgini to have wide geographic distribution in Gondwana, making stratigraphical correlations between various Gondwana regions based on Cambrian trilobites possible.[140]
  • A study on the morphology, ontogeny and systematics of Walcottaspis vanhornei is published by Srivastava & Hughes (2023).[141]
  • Hou, Hughes & Hopkins (2023) report the presence of setae on the walking legs of the Cambrian Olenoides serratus and on the gill shaft of the Ordovician Triarthrus eatoni, and interpret these setae as likely used to groom the gills of the trilobites.[142]
  • Evidence of the presence of countercurrent gaseous exchange mechanism in the gills of Triarthrus eatoni is presented by Hou et al. (2023).[143]
  • A study on the taphonomy of the Ordovician trilobites from the Walcott–Rust quarry (New York, United States) is published by Losso, Thines & Ortega-Hernández (2023), who report evidence indicating that fine-grained sediment supported the preservation of delicate appendages and facilitated their fossilization.[144]
  • Laibl et al. (2023) describe early developmental stages of at least nine trilobite species from the Fezouata Formation (Morocco), providing new information on the development of early Ordovician trilobites.[145]
  • Schoenemann & Clarkson (2023) describe specimens of Aulacopleura koninckii and Cyclopyge sibilla preserved with structures interpreted as likely median eyes, and interpret this finding as indicating that early developmental stages of trilobites possessed median eyes (probably unlike adult specimens).[146]
  • A study on the impact of changes of body shape and construction of Aulacopleura koninckii during its growth on changes of the style of its enrolment is published by Esteve & Hughes (2023), who find that the change in enrolment style happening at the onset of mature growth made it possible for A. koninckii to assume defensive posture regardless of the variation in the number of mature trunk segments of specimens belonging to the studied species.[147]
  • A study on the hydrodynamics of Microparia speciosa, indicating that it had a high stability in the water column when it was enrolled, is published by Esteve & López-Pachón (2023).[148]
  • Kraft et al. (2023) describe a specimen of Bohemolichas incola from the Darriwilian Šárka Formation (Czech Republic) preserved with fossilized gut contents, providing evidence of adaptation of the studied trilobite to feeding on organic remains including shells, and probably of digestive enzymes similar to those in modern crustaceans or chelicerates.[149]
  • Gishlick & Fortey (2023) describe a specimen of Walliserops trifurcatus with a malformed cephalic trident showing four rather than three tines, and consider its anatomy to be consistent with the interpretation of the trident as a weapon used for intraspecific combat.[150]
  • Fossil evidence confirming the survival of encrinurid trilobites into the earliest Devonian is reported from the Wutubulake and Mangeer formations (China) by Ma et al. (2023).[151]
  • A study on the impact of the Late Devonian extinctions on the taxonomic and morphological diversity of trilobites, and on the trilobite recovery after the extinction events, is published by Bault (2023).[152]
  • A study on the locomotion of trilobites, based on data from three-dimensional models, is published by Esteve & Rubio (2023), who find evidence for two main gait types reflecting burrowing and walking, as well as evidence indicating that the body structure constrained speed and lifestyles of trilobites.[153]
  • A study on changes of the morphological diversity of phacopid trilobites throughout their evolutionary history is published by Bault et al. (2023).[154]

Other arthropods

Name Novelty Status Authors Age Type locality Country Notes Images

Austriocaris secretanae[155]

Sp. nov

Valid

Laville, Forel & Charbonnier

Middle Jurassic (Callovian)

La Voulte-sur-Rhône Lagerstätte

 France

A thylacocephalan.

Carimersa[156]

Gen. et sp. nov

Briggs et al.

Silurian (Wenlock)

Herefordshire Lagerstätte

 United Kingdom

A member of Artiopoda belonging to the group Vicissicaudata. The type species is C. neptuni.

Cotalagnostus greilingi[157]

Sp. nov

Valid

Weidner, Nielsen & Ebbestad

Cambrian (Miaolingian)

Alum Shale Formation

 Sweden

A member of Agnostoidea belonging to the family Spinagnostidae.

Electroprojapyx[158]

Gen. et sp. nov

Valid

Sánchez-García et al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A member of Diplura belonging to the family Projapygidae. The type species is E. alchemicus.

Lauravolsella[159]

Gen. et sp. nov

Valid

Haug, Fraaije & Haug

Carboniferous (Westphalian)

 Netherlands

A millipede, possibly belonging to the group Archipolypoda. The type species is L. willemeni.

Lepidocampa glaesi[160]

Sp. nov

Valid

Sánchez-García, Sendra & Grimaldi in Sánchez-García et al.

Miocene

Dominican amber

 Dominican Republic

A member of Diplura belonging to the family Campodeidae.

Lithopendra[161]

Gen. et sp. nov

Valid

Haug, Haug & Haug

Cretaceous

Burmese amber

 Myanmar

A centipede belonging to the group Pleurostigmophora. The type species is L. anjafliessae.

Litocampa eobaltica[160]

Sp. nov

Valid

Sánchez-García, Sendra & Grimaldi in Sánchez-García et al.

Eocene

Baltic amber

Europe (Baltic Sea region)

A member of Diplura belonging to the family Campodeidae, a species of Litocampa.

Maldybulakia saierensis[162]

Sp. nov

Valid

Zong et al.

Silurian (Pridoli)

 China

Paraclausocaris[155]

Gen. et sp. nov

Valid

Laville, Forel & Charbonnier

Middle Jurassic (Callovian)

La Voulte-sur-Rhône Lagerstätte

 France

A thylacocephalan. The type species is P. harpa.

Rostricampa[160]

Gen. et sp. nov

Valid

Sánchez-García, Sendra & Grimaldi in Sánchez-García et al.

Miocene

Dominican amber

 Dominican Republic

A member of Diplura belonging to the family Campodeidae. The type species is R. engeli.

Sidneyia malongensis[163]

Sp. nov

Valid

Zhu et al.

Cambrian Stage 3

Yu'anshan Formation

 China

Sidneyia minor[164]

Sp. nov

Valid

Du et al.

Cambrian Stage 3

 China

Symphylurinopsis[158]

Gen. et sp. nov

Valid

Sánchez-García et al.

Miocene

Dominican amber

 Dominican Republic

A member of Diplura belonging to the family Projapygidae. The type species is S. punctatus.

Theatops groehni[165]

Sp. nov

Valid

Edgecombe et al.

Eocene

Baltic amber

Europe (Baltic Sea region)

A centipede belonging to the family Plutoniumidae.

Thulaspis[166]

Gen. et sp. nov

Valid

Berks et al.

Cambrian Stage 3

Buen Formation

 Greenland

A member of Artiopoda. The type species is T. tholops.

Tonglaiia[163]

Gen. et sp. nov

Valid

Zhu et al.

Cambrian Stage 3

Yu'anshan Formation

 China

A member of Artiopoda of uncertain affinities. The type species is T. bispinosa.

Zhugeia[163]

Gen. et sp. nov

Valid

Zhu et al.

Cambrian Stage 3

Yu'anshan Formation

 China

A member of Artiopoda belonging to the group Xandarellida. The type species is Z. acuticaudata.

  • New information on the anatomy of Kylinxia zhangi, indicating that its head was composed of six segments (as in extant mandibulates), is presented by O'Flynn et al. (2023), who interpret their findings as indicating that a six-segmented head was already present in the last common ancestor of Kylinxia and the euarthropod crown group.[167]
  • Redescription of Isoxys curvirostratus, incorporating data from new fossil material from the Cambrian Chiungchussu Formation (China) and focusing on the biramous appendages of this arthropod, is published by Zhang et al. (2023), who report that the appendage differentiation in Isoxys was higher than previously considered, that the trunk of I. curvirostratus was not arthrodized, and that Isoxys was one of the earliest branching members of Deuteropoda.[168]
  • A study on the ontogeny of Isoxys minor, based on data from specimens from the Cambrian Shuijingtuo formation (China), is published by Ma et al. (2023), who interpret the studied fossil material as indicative of only slight morphological differences between the specimens of I. minor which might have been caused by different environment, indicative of the presence of brood care in I. minor, and well as indicative of reproductive ability at the early life stages of this arthropod.[169]
  • Drage, Legg & Daley (2023) describe exuviae from a marrellid marrellomorph from the Ordovician Fezouata Formation (Morocco), providing evidence of moulting behaviour distinct from that described for Marrella splendens.[170]
  • A study on the morphology of early developmental stages of marrellids from the Fezouata Formation is published by Laibl et al. (2023), who report that adults and immature individuals shares the same general appendage differentiation, and avoided direct competition for food resources only by feeding on particles of different size.[171]
  • New information on the anatomy of Concavicaris woodfordi, including the structure of the shield, the circulatory, digestive and reproductive systems, and the appendages, is presented by Laville et al. (2023).[172]
  • Wellman et al. (2023) present data supporting a Silurian (late Wenlock) age of the "Lower Old Red Sandstone" deposits of the Midland Valley (Scotland, United Kingdom) preserving the fossil material of Pneumodesmus newmani, supporting the interpretation of this myriapod as the oldest known air-breathing land animal.[173]
  • New information on the morphology of the Carboniferous millipedes Amynilyspes fatimae and Blanziulus parriati from the Montceau-les-Mines Lagerstätte (France) is presented by Lheritier et al. (2023).[174]

General research

References

  1. Novák, J.; Harvey, M. S.; Szabó, M.; Hammel, J. U.; Harms, D.; Kotthoff, U.; Hörweg, C.; Brazidec, M.; Ősi, A. (2023). "A new Mesozoic record of the pseudoscorpion family Garypinidae from Upper Cretaceous (Santonian) Ajkaite amber, Ajka area, Hungary". Cretaceous Research. 105709. doi:10.1016/j.cretres.2023.105709.
  2. Chitimia-Dobler, L.; Dunlop, J. A.; Pfeffer, T.; Würzinger, F.; Handschuh, S.; Mans, B. (2022). "Hard ticks in Burmese amber with Australasian affinities". Parasitology. 150 (2): 157–171. doi:10.1017/S0031182022001585. PMC 10090639. PMID 36341553. S2CID 253382440.
  3. Lourenço, W. R.; Velten, J. (2023). "A second species of Archaeoscorpiops Lourenço, 2015 from Cretaceous Burmese amber (Scorpiones: Palaeoeuscorpiidae)". Faunitaxys. 11 (57): 1–4. doi:10.57800/faunitaxys-11(57).
  4. Dunlop, J. A. (2023). "The first Palaeozoic spider (Arachnida: Araneae) from Germany". PalZ. 97 (3): 497–504. doi:10.1007/s12542-023-00657-7. S2CID 259941358.
  5. Xuan, Q.; Cai, C.Y.; Huang, D.Y. (2023). "Revision of palaeoburmesebuthid scorpions in mid-Cretaceous amber from northern Myanmar (Scorpiones: Buthoidea)". Palaeoentomology. 6 (1): 64–101. doi:10.11646/palaeoentomology.6.1.10. S2CID 257247707.
  6. Turbanov, I. S.; Kolesnikov, V. B.; Vorontsov, D. D.; Vasilenko, D. V.; Perkovsky, E. E. (2023). "Chthonius marusiki sp. nov. – the first pseudoscorpion of the family Chthoniidae Daday, 1889 (Arachnida, Pseudoscorpiones) from the late Eocene Rovno amber". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2023.2266821.
  7. Lourenço, W. R.; Velten, J. (2023). "Confirmation of the validity of the genus Cretaceousbuthus Lourenço, 2022 and description of a new species from Burmite (Scorpiones: Buthoidea: Buthidae)". Faunitaxys. 11 (35): 1–6. doi:10.57800/faunitaxys-11(35).
  8. Zhou, L.-J.; Wang, H.; Jarzembowski, E. A.; Xiao, C. (2023). "A new genus of whip scorpion (Arachnida: Thelyphonida: Thelyphonidae) from mid-Cretaceous Kachin amber of northern Myanmar". Cretaceous Research. 105702. doi:10.1016/j.cretres.2023.105702.
  9. Dunlop, J. A.; Erdek, M.; Bartel, C. (2023). "A new species of camel spider (Arachnida: Solifugae) in Baltic amber". Arachnology. 19 (4): 772–776. doi:10.13156/arac.2023.19.4.772. S2CID 257632799.
  10. Peng, Y.; Shi, C.; Long, X.; Engel, M. S.; Wang, S. (2023). "Discovery of a new species of Eomysmauchenius from mid-Cretaceous Kachin amber (Araneae: Archaeidae)". Cretaceous Research. 105703. doi:10.1016/j.cretres.2023.105703.
  11. Bartel, C.; Dunlop, J. A.; Giribet, G. (2023). "An unexpected diversity of Cyphophthalmi (Arachnida: Opiliones) in Upper Cretaceous Burmese amber". Zootaxa. 5296 (3): 421–445. doi:10.11646/zootaxa.5296.3.6. PMID 37518436. S2CID 258964248.
  12. McCurry, M. R.; Frese, M.; Raven, R. (2023). "A large brush-footed trapdoor spider (Mygalomorphae: Barychelidae) from the Miocene of Australia". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlad100.
  13. Knecht, R. J.; Benner, J. S.; Dunlop, J. A.; Renczkowski, M. D. (2022). "The largest Palaeozoic whip scorpion and the smallest (Arachnida: Uropygi: Thelyphonida); a new species and a new ichnospecies from the Carboniferous of New England, USA". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlad088.
  14. Tang, Y.-N.; Peng, A.-C.; Wu, Z.-Y.; Engel, M. S.; Yang, Z.-Z.; Liu, Y. (2023). "Mygalomorph spiders in mid-Cretaceous Kachin amber (Araneae: Mygalomorphae), northern Myanmar: a new genus and species of the family Macrothelidae". Cretaceous Research. 147. 105514. Bibcode:2023CrRes.14705514T. doi:10.1016/j.cretres.2023.105514. S2CID 257306643.
  15. Viaretti, M.; Bindellini, G.; Dal Sasso, C. (2023). "A new Mesozoic scorpion from the Besano Formation (Middle Triassic, Monte San Giorgio UNESCO WHL), Italy". PalZ. 97 (3): 505–517. doi:10.1007/s12542-023-00659-5. S2CID 259917687.
  16. Bartel, C.; Dunlop, J. A. (2023). "First eupnoid harvestmen (Arachnida: Opiliones: Eupnoi) from mid-Cretaceous Kachin amber, with notes on sexual dimorphism in Halitherses grimaldii (Arachnida: Opiliones: Dyspnoi)". Palaeoentomology. 6 (3): 278–291. doi:10.11646/palaeoentomology.6.3.11. S2CID 259732838.
  17. Khaustov, A. A.; Vorontsov, D. D.; Lindquist, E. E. (2023). "Unguicheylidae fam. nov., a new fossil family of prostigmatic mites (Acari: Prostigmata) from the Cretaceous Taimyr amber". Systematic and Applied Acarology. 28 (4): 766–776. doi:10.11158/saa.28.4.12. S2CID 258377428.
  18. Lindquist, E. E.; Vorontsov, D. D. (2023). "Uropodella (Acari: Mesostigmata: Sejidae), mites unchanged from Eocene past to Holocene present". Acarologia. 63 (2): 346–355. doi:10.24349/y1ey-edzd. S2CID 257800454.
  19. Chitimia-Dobler, L.; Pfeffer, T.; Würzinger, F.; Handschuh, S.; Dunlop, J. A. (2023). "New larval records of the extinct hard tick Compluriscutula vetulum (Arachnida: Ixodida) from Burmese amber, with notes on its morphology". Palaeoworld. doi:10.1016/j.palwor.2023.10.002.
  20. Dunlop, J. A.; Dernov, V. S. (2023). "The first trigonotarbid arachnid from Ukraine". Acta Geologica Polonica. 73 (2): 181–187. doi:10.24425/agp.2022.143600. S2CID 259699027.
  21. Garwood, R. J.; Dunlop, J. A. (2023). "X-ray microtomography of the late Carboniferous whip scorpions (Arachnida, Thelyphonida) Geralinura britannica and Proschizomus petrunkevitchi". Journal of Systematic Palaeontology. 21 (1). 2180450. doi:10.1080/14772019.2023.2180450. S2CID 257976364.
  22. Alberto, G. M.; Bezerra, F. I.; Giupponi, A. P. L.; Mendes, M. (2023). "A new specimen of whip scorpion (Arachnida; Thelyphonida) from the Crato Formation, Lower Cretaceous of Brazil". Revista Brasileira de Paleontologia. 26 (3): 147–155. doi:10.4072/rbp.2023.3.01.
  23. García-Villafuerte, M. Á.; Ibarra-Núñez, G. (2023). "The male of Strotarchus paradoxus (Petrunkevitch, 1963) (Araneae: Cheiracanthiidae), a fossil spider from Chiapas, Mexico". Acta Zoológica Mexicana. nueva serie. 39. e3912588. doi:10.21829/azm.2023.3912588. S2CID 258453853.
  24. Wood, H. M.; Wunderlich, J. (2023). "Burma Terrane Amber Fauna Shows Connections to Gondwana and Transported Gondwanan Lineages to the Northern Hemisphere (Araneae: Palpimanoidea)". Systematic Biology. doi:10.1093/sysbio/syad047. PMID 37527553.
  25. Richardson, B. J.; McCurry, M. R.; Frese, M. (2023). "Description and evolutionary biogeography of the first Miocene jumping spider (Aranaea: Salticidae) from a southern continent". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlad105.
  26. Wang, H.; Braddy, S. J.; Botting, J.; Zhang, Y. (2023). "The first documentation of an Ordovician eurypterid (Chelicerata) from China". Journal of Paleontology. 97 (3): 606–611. doi:10.1017/jpa.2023.21. S2CID 258623960.
  27. Lustri, L.; Antcliffe, J. B.; Saleh, F.; Haug, C.; Laibl, L.; Garwood, R. J.; Haug, J. T.; Daley, A. C. (2023). "New perspectives on the evolutionary history of xiphosuran development through comparison with other fossil euchelicerates". Frontiers in Ecology and Evolution. 11. 1270429. doi:10.3389/fevo.2023.1270429.
  28. Klompmaker, A. A.; van Eldijk, T. J. B.; Winkelhorst, H.; Reumer, J. W. F. (2023). "A non-marine horseshoe crab from the Middle Triassic (Anisian) of the Netherlands". Netherlands Journal of Geosciences. 102. e1. doi:10.1017/njg.2022.16. S2CID 255547401.
  29. Siveter, D. J.; Sabroux, R.; Briggs, D. E. G.; Siveter, D. J.; Sutton, M. D. (2023). "Newly discovered morphology of the Silurian sea spider Haliestes and its implications". Papers in Palaeontology. 9 (5). e1528. doi:10.1002/spp2.1528.
  30. Sabroux, R.; Edgecombe, G. D.; Pisani, D.; Garwood, R. J. (2023). "New insights into the sea spider fauna (Arthropoda, Pycnogonida) of La Voulte-sur-Rhône, France (Jurassic, Callovian)". Papers in Palaeontology. 9 (4). e1515. doi:10.1002/spp2.1515. S2CID 260180232.
  31. Garassino, A.; Pasini, G.; Castro, P. (2023). "Validation of Albaidaplax ispalensis Garassino, Pasini & Castro, a fossil goneplacid crab from Spain and Italy (Crustacea: Decapoda: Goneplacidae)". Zootaxa. 5318 (2): 297–298. doi:10.11646/zootaxa.5318.2.12. PMID 37518380. S2CID 260013794.
  32. Garassino, A.; Pasini, G.; Castro, P. (2013). "Revision of the fossil species of Goneplax Leach, 1814 (Crustacea, Decapoda, Brachyura, Goneplacidae)". Boletín de la Sociedad Geológica Mexicana. 65 (2): 355–368. doi:10.18268/BSGM2013v65n2a16.
  33. Yost, S. L.; Feldmann, R. M.; Schweitzer, C. E. (2023). "New Decapoda (Anomura) from the Paleocene Kambühel Formation, Austria" (PDF). Annalen des Naturhistorischen Museums in Wien, Serie A. 124: 149–166. JSTOR 27213513.
  34. Schweitzer, C. E.; Santana, W.; Pinheiro, A.; Feldmann, R. M. (2023). "Validation of Bahiacaris Schweitzer, Santana, Pinheiro & Feldmann (Crustacea, Decapoda, Caridea) from the Cretaceous (Aptian) of Brazil". Zootaxa. 5318 (2): 299–300. doi:10.11646/zootaxa.5318.2.13. PMID 37518379. S2CID 260020820.
  35. Schweitzer, C. E.; Santana, W.; Pinheiro, A.; Feldmann, R. M. (2019). "Redescription and illustration of caridean shrimp from the Cretaceous (Aptian) of Brazil". Journal of South American Earth Sciences. 90: 70–75. Bibcode:2019JSAES..90...70S. doi:10.1016/j.jsames.2018.12.001. S2CID 133909136.
  36. de Mazancourt, V.; Wappler, T.; Wedmann, S. (2022). "Exceptional preservation of internal organs in a new fossil species of freshwater shrimp (Caridea: Palaemonoidea) from the Eocene of Messel (Germany)". Scientific Reports. 12 (1). 18114. Bibcode:2022NatSR..1218114D. doi:10.1038/s41598-022-23125-9. PMC 9613706. PMID 36302944.
  37. de Mazancourt, V.; Wappler, T.; Wedmann, S. (2023). "Author Correction: Exceptional preservation of internal organs in a new fossil species of freshwater shrimp (Caridea: Palaemonoidea) from the Eocene of Messel (Germany)". Scientific Reports. 13 (1). 5943. Bibcode:2023NatSR..13.5943D. doi:10.1038/s41598-023-32986-7. PMC 10097716. PMID 37046034.
  38. De Angeli, A. (2023). "Nuovi crostacei decapodi dell'Eocene superiore dei Monti Berici (Vicenza, Italia nordorientale)". Lavori – Società Veneziana di Scienze Naturali. 48: 169–186.
  39. Miller, J. B.; Schweitzer, C. E.; Feldmann, R. M. (2023). "New Decapoda (Brachyura) from the Paleocene Kambühel Formation, Austria" (PDF). Annalen des Naturhistorischen Museums in Wien, Serie A. 124: 125–148. JSTOR 27213512.
  40. Hyžný, M.; Vega, F. J.; Coutiño, M. A. (2023). "Validation of Callianassa ocozocoautlaensis Hyžný, Vega & Coutiño, a fossil ghost shrimp (Malacostraca: Decapoda: Axiidea) from the Upper Cretaceous of Chiapas, Mexico". Zootaxa. 5318 (2): 295–296. doi:10.11646/zootaxa.5318.2.11. PMID 37518381. S2CID 260032805.
  41. Hyžný, M.; Vega, F. J.; Coutiño, M. A. (2013). "Ghost shrimps (Decapoda: Axiidea: Callianassidae) of the Maastrichtian (Late Cretaceous) Ocozocoautla Formation, Chiapas (Mexico)". Boletín de la Sociedad Geológica Mexicana. 65 (2): 255–264. doi:10.18268/BSGM2013v65n2a7.
  42. Nyborg, T.; Hyžný, M.; Haggart, J. W. (2023). "On the occurrence of a burrowing lobster (Malacostraca: Decapoda: Axiidea) from the Upper Cretaceous Cedar District Formation, Little Sucia Island, Washington State, with a description of a new genus". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 309 (2): 153–159. doi:10.1127/njgpa/2023/1156.
  43. Santana, W.; Tavares, M.; Martins, C. A. M.; Melo, J. P. P.; Pinheiro, A. P. (2023). "Validation of Chronocancer camilosantanai† Santana, Tavares, Martins, Melo & Pinheiro (Crustacea, Decapoda, Brachyura) from the Romualdo Formation, Araripe Sedimentary Basin, Brazil". Papéis Avulsos de Zoologia. 63. e202363014. doi:10.11606/1807-0205/2023.63.014. S2CID 258596942.
  44. Santana, W.; Tavares, M.; Martins, C. A. M.; Melo, J. P. P.; Pinheiro, A. P. (2022). "A new genus and species of brachyuran crab (Crustacea, Decapoda) from the Aptian-Albian (Cretaceous) of the Araripe Sedimentary Basin, Brazil". Journal of South American Earth Sciences. 116. 103848. Bibcode:2022JSAES.11603848S. doi:10.1016/j.jsames.2022.103848. S2CID 249005503.
  45. Nyborg, T.; Vega, F. J.; Filkorn, H. F. (2023). "Validation of Costacopluma squiresi Nyborg, Vega & Filkorn (Crustacea: Brachyura: Retroplumidae) from the Pacific Slope, Paleocene of California, USA". Zootaxa. 5315 (5): 492–494. doi:10.11646/zootaxa.5315.5.7. PMID 37518412. S2CID 259896337.
  46. Nyborg, T.; Vega, F. J.; Filkorn, H. F. (2009). "First described species of Costacopluma (Crustacea: Brachyura: Retroplumidae) from the Pacific slope, Paleocene of California, USA". Boletín de la Sociedad Geológica Mexicana. 61 (2): 203–209. doi:10.18268/BSGM2009v61n2a7.
  47. García-Penas, Á.; Ferratges, F. A.; Moreno-Bedmar, J. A.; Bover-Arnal, T.; Gasca, J. M.; Aurell, M.; Zamora, S. (2023). "Decapod crustaceans from the Lower Cretaceous of Spain, with an account of new occurrences in Barremian-Aptian strata of the Maestrazgo Basin". Cretaceous Research. 150. 105576. Bibcode:2023CrRes.15005576G. doi:10.1016/j.cretres.2023.105576. S2CID 258754780.
  48. Nyborg, T.; Garassino, A.; Vega, F. J. (2023). "Validation of Cretalamoha boweni Nyborg & Garassino (Brachyura: Homolidae) from the early Campanian, Upper Cretaceous of British Columbia, Canada". Zootaxa. 5318 (1): 148–150. doi:10.11646/zootaxa.5318.1.8. PMID 37518392. S2CID 260028035.
  49. Nyborg, T.; Garassino, A. (2017). "New Occurrences of Fossil Homolidae from the Eastern Pacific". Boletín de la Sociedad Geológica Mexicana. 69 (1): 135–148. doi:10.18268/BSGM2017v69n1a6.
  50. Liu, Y.; Poschmann, M. J.; Fan, R.; Zong, R.; Gong, Y. (2023). "Silurian phyllocarid crustaceans (Phyllocarida, Archaeostraca) from South China". Journal of Systematic Palaeontology. 21 (1). 2187718. doi:10.1080/14772019.2023.2187718. S2CID 257971372.
  51. Wallaard, J. J. W.; Fraaije, R. H. B.; Van Bakel, B. W. M.; Jagt, J. W. M.; Müller, P. M. (2023). "Miocene decapod crustacean faunas from Cyprus – Part 1. Geographical-stratigraphical setting and Anomura". Palaeontologia Electronica. 26 (3). 26.3.a38. doi:10.26879/1258.
  52. Gómez-Cruz, A. de J.; Bermúdez, H. D.; Vega, F. J. (2023). "Validation of Diaulax rosablanca Gómez-Cruz, Bermúdez & Vega (Brachyura: Dialucidae) from the Lower Cretaceous Rosablanca Formation, Colombia". Zootaxa. 5315 (4): 396–398. doi:10.11646/zootaxa.5315.4.7. PMID 37518592. S2CID 259838457.
  53. Gómez-Cruz, A. de J.; Bermúdez, H. D.; Vega, F. J. (2015). "A new species of Diaulax Bell, 1863 (Brachyura: Dialucidae) in the Early Cretaceous of the Rosablanca Formation, Colombia". Boletín de la Sociedad Geológica Mexicana. 67 (1): 103–112. doi:10.18268/BSGM2015v67n1a8.
  54. Van Bakel, B. W. M.; Hyžný, M.; Valentin, X.; N., Robin (2023). "Validation of Dinocarcinus velauciensis Van Bakel, Hyžný, Valentin & Robin, a fossil crab (Crustacea, Decapoda, Brachyura) from Upper Cretaceous (Campanian) continental deposits of Velaux and vicinity, southern France". Zootaxa. 5315 (5): 483–484. doi:10.11646/zootaxa.5315.5.5. PMID 37518414. S2CID 259879589.
  55. N., Robin; Van Bakel, B. W. M.; Hyžný, M.; A., Cincotta; G., Garcia; S., Charbonnier; P., Godefroit; Valentin, X. (2019). "The oldest freshwater crabs: claws on dinosaur bones". Scientific Reports. 9 (1). 20220. Bibcode:2019NatSR...920220R. doi:10.1038/s41598-019-56180-w. PMC 6934782. PMID 31882600.
  56. Alencar, D. R.; Santana, W.; Pinheiro, A. P.; Lima, D.; Feitosa Saraiva, A. Á.; de Oliveira, G. R. (2023). "New Cretaceous (Aptian/Albian) boxer shrimp (Crustacea, Decapoda, Stenopodidea) from the Araripe Sedimentary Basin, NE, Brazil". PLOS ONE. 18 (3). e0281334. Bibcode:2023PLoSO..1881334A. doi:10.1371/journal.pone.0281334. PMC 10032536. PMID 36947562.
  57. Vega, F. J.; Garassino, A.; Zapata-Jaime, R. (2023). "Validation of Enoploclytia tepeyacensis Vega, Garassino, & Zapata-Jaime (Crustacea: Decapoda: Erymidae) from the Cretaceous (Campanian) of Mexico". Zootaxa. 5315 (5): 498–500. doi:10.11646/zootaxa.5315.5.9. PMID 37518410. S2CID 259898664.
  58. Vega, F. J.; Garassino, A.; Zapata-Jaime, R. (2013). "Enoploclytia tepeyacensis n. sp. (Crustacea, Decapoda, Erymidae) from the Cretaceous (Campanian) of Coahuila, NE Mexico". Boletín de la Sociedad Geológica Mexicana. 65 (2): 207–211. doi:10.18268/BSGM2013v65n2a1.
  59. Schädel, M.; Nagler, C.; Hyžný, M. (2023). "Fossil relatives of extant parasitic crustaceans from the Mesozoic of Europe" (PDF). Boletín de la Sociedad Geológica Mexicana. 75 (2). A220323. doi:10.18268/BSGM2023v75n2a220323. S2CID 259579171.
  60. Karasawa, H.; Ohara, M.; Kato, H. (2023). "Validation of the names of four species of Decapoda and one species of Isopoda from the Lower Cretaceous (Barremian) Arida Formation of central Japan". Zootaxa. 5277 (1): 198–200. doi:10.11646/zootaxa.5277.1.12. PMID 37518321. S2CID 258447077.
  61. Ferratges, F. A.; Domínguez, J. L.; Ossó, À.; Zamora, S. (2023). "Spider crabs (Decapoda: Brachyura: Majoidea) from the upper Eocene of south Pyrenees (Huesca, Spain)". Palaeontologia Electronica. 26 (2). 26.2.a27. doi:10.26879/1270.
  62. Garassino, A.; Pasini, G.; Schweigert, G.; Charbonnier, S. (2023). "An updated reassessment of Antrimpos Münster, 1839 (Dendrobranchiata, Penaeidae)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 307 (1): 1–15. doi:10.1127/njgpa/2023/1107. S2CID 256748593.
  63. Charbonnier, S.; Garassino, A.; López-Horgue, M. A. (2023). "A new species of glypheid lobster, Glyphea pisuergae (Crustacea, Glypheoidea), from the Early Jurassic of Palencia, Basque-Cantabrian Basin, Spain". Annales de Paléontologie. 109 (1). 102596. Bibcode:2023AnPal.10902596C. doi:10.1016/j.annpal.2023.102596. S2CID 257862576.
  64. Lima, D.; Silva, R. C.; Aguilera, O.; Pinheiro, A. P.; Santana, W. (2023). "Brazilian Miocene crabs I. Taxonomic review of Cyclocancer tuberculatus Beurlen, 1958 and Hepatella amazonica Beurlen, 1958 (Pancrustacea, Decapoda, Brachyura)". Papéis Avulsos de Zoologia. 63: e202363012. doi:10.11606/1807-0205/2023.63.012. S2CID 258096809.
  65. García-Vázquez, L.; Alvarado-Ortega, J.; Vega, F. J. (2023). "Pliocene freshwater isopods (Crustacea: Peracarida: Isopoda) from Jalisco, Mexico" (PDF). Boletín de la Sociedad Geológica Mexicana. 75 (1). A271122. doi:10.18268/BSGM2023v75n1a271122. S2CID 258184899.
  66. Starzyk, N.; Van Bakel, B. W. M.; Klompmaker, A. A.; Schweigert, G.; Fraaije, R. H. B. (2023). "A new approach to the systematics of Laeviprosopon (Brachyura: Homolidae), with remarks on molting process of the early brachyurans". Palaeontologia Electronica. 26 (1). 26.1.a10. doi:10.26879/1204.
  67. Fraaije, R. H. B.; van Bakel, B. W. M.; Jagt, J. W. M.; Wallaard, J. J. W.; De Coninck, L. (2023). "A new hermit crab (Anomura, Paguroidea) from the middle Albian of Wissant, Pas-de-Calais (northern France)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 307 (2): 107–111. doi:10.1127/njgpa/2023/1117. S2CID 257561920.
  68. van Bakel, B. W. M.; Guinot, D. (2023). "New genera and species of glaessneropsid crabs from the Lower and Middle Jurassic of France and Germany-Austria, and reconsolidation of Charassocarcinus Van Straelen, 1925". Geobios. doi:10.1016/j.geobios.2023.05.007. S2CID 259916458.
  69. Gašparič, R.; Tshudy, D.; Chan, T.-Y.; Ćorić, S. (2023). "Validation of Metanephrops serendipitus (Crustacea, Decapoda, Nephropidae), a deep-water lobster from lower Miocene of Meljski hrib (Maribor, Slovenia)". Zootaxa. 5323 (3): 440–442. doi:10.11646/zootaxa.5323.3.9. S2CID 260528714.
  70. Gašparič, R.; Tshudy, D.; Chan, T.-Y.; Ćorić, S. (2021). "A new deep-water lobster, Metanephrops serendipitus sp. nov. (Crustacea, Decapoda, Nephropidae), from lower Miocene of Meljski hrib (Maribor, Slovenia)". Boletín de la Sociedad Geológica Mexicana. 73 (3). A240521. doi:10.18268/BSGM2021v73n3a240521. S2CID 245028447.
  71. Charbonnier, S.; Garassino, A.; Gendry, D.; Devillez, J.; Picot, L. (2023). "The decapod crustacean fauna from the Late Jurassic of Cricqueboeuf, Normandy (France)". Geodiversitas. 45 (19): 573–588. doi:10.5252/geodiversitas2023v45a19.
  72. Mychko, E. V.; Schweitzer, C. E.; Feldmann, R. M.; Shmakov, A. S. (2023). "The first report of Necrocarcinus (Crustacea: Brachyura: Raninoida) from the Cenomanian of Central Russia". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 309 (1): 31–42. doi:10.1127/njgpa/2023/1146. S2CID 260661087.
  73. Guzmán, W.; Bermúdez, H. D.; Gómez-Cruz, A. de J.; F. J., Vega (2023). "Validation of Ophthalmoplax andina Guzmán, Bermúdez, Gómez-Cruz, & Vega (Decapoda: Brachyura: Portunoidea) from the late Campanian, Upper Cretaceous of Colombia". Zootaxa. 5315 (5): 495–497. doi:10.11646/zootaxa.5315.5.8. PMID 37518411. S2CID 259888756.
  74. Guzmán, W.; Bermúdez, H. D.; Gómez-Cruz, A. de J.; F. J., Vega (2016). "Ophthalmoplax (Decapoda: Brachyura: Portunoidea) from the late Campanian, Upper Cretaceous, of Colombia". Boletín de la Sociedad Geológica Mexicana. 68 (1): 93–103. doi:10.18268/BSGM2016v68n1a11.
  75. Nyborg, T.; Garassino, A.; Nyborg, B. (2023). "A new fossil frog crab (Brachyura, Lyreididae) from the Eocene of northeastern Pacific". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 307 (1): 29–39. doi:10.1127/njgpa/2023/1110. S2CID 256754390.
  76. Braig, F.; Haug, J. T.; Ahyong, S. T.; Garassino, A.; Schädel, M.; Haug, C. (2023). "Another piece in the puzzle of mantis shrimp evolution – fossils from the Early Jurassic Osteno Lagerstätte of Northern Italy". Comptes Rendus Palevol. 22 (2): 17–31. doi:10.5852/cr-palevol2023v22a2. S2CID 256217869.
  77. Wallaard, J. J. W.; Fraaije, R. H. B.; Van Bakel, B. W. M.; Nance, J. R.; Lindholm, A.; Jagt, J. W. M. (2023). "New hermit crab species (Anomura, Paguroidea) from the upper Miocene St. Marys Formation of Maryland (USA), preserved in their host shells". Zootaxa. 5227 (3): 389–397. doi:10.11646/zootaxa.5227.3.7. PMID 37044682. S2CID 255668962.
  78. Fraaije, R. H. B.; Van Bakel, B. W. M.; Jagt, J. W. M.; Krobicki, M.; Ossó, À.; Palero, F.; Wallaard, J. J. W. (2023). "A reconsideration of the palinuroid family Synaxidae (Crustacea, Decapoda), with a new member from the Upper Jurassic of southern Poland". Palaeontologia Electronica. 26 (2). 26.2.19. doi:10.26879/1252.
  79. Nyborg, T.; Garassino, A.; Vega, F. J. (2023). "Validation of Paromola roseburgensis Nyborg & Garassino (Brachyura: Homolidae) from the early Eocene of Oregon, USA". Zootaxa. 5318 (3): 441–442. doi:10.11646/zootaxa.5318.3.11. PMID 37518368. S2CID 260008133.
  80. Schweigert, G. (2023). "Validation of Petersbuchia Schweigert, a prosopid crab from the Upper Jurassic of Germany". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 308 (3): 289–290. doi:10.1127/njgpa/2023/1144. S2CID 259588399.
  81. Schweigert, G. (2021). "A new genus of prosopid crabs (Decapoda: Brachyura: Dromiacea) from the Upper Jurassic of southern Germany". Boletín de la Sociedad Geológica Mexicana. 73 (3): A030121. doi:10.18268/BSGM2021v73n3a030121. S2CID 245103649.
  82. Ferratges, F. A.; Luque, J.; Domínguez, J. L.; Ossó, À.; Aurell, M.; Zamora, S. (2023). "The oldest dairoidid crab (Decapoda, Brachyura, Parthenopoidea) from the Eocene of Spain". Papers in Palaeontology. 9 (3). e1494. doi:10.1002/spp2.1494. S2CID 259124402.
  83. Pasini, G.; Garassino, A.; Charbonnier, S. (2023). "A new litogastrid lobster (Decapoda, Glypheoidea) from the Anisian (Middle Triassic) of the Dolomiti del Cadore (Belluno, Veneto, NE Italy)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 307 (2): 101–105. doi:10.1127/njgpa/2023/1116. S2CID 257578672.
  84. Barros, O. A.; de Oliveira, P. V. (2023). "New Dendrobranchiata fossil preserved in the Brazilian Cretaceous (Aptian/Albian) from the Araripe Basin, Piauí State". Zootaxa. 5264 (4): 545–563. doi:10.11646/zootaxa.5264.4.5. PMID 37518032. S2CID 258205413.
  85. Liu, Y.; Fan, R.; Zong, R.; Gong, Y. (2023). "First occurrence of caryocaridids (Crustacea, Phyllocarida) in the Ordovician of North China". Palaeogeography, Palaeoclimatology, Palaeoecology. 623. 111638. Bibcode:2023PPP...623k1638L. doi:10.1016/j.palaeo.2023.111638. S2CID 258727455.
  86. Pazinato, P. G.; Müller, P.; Haug, J. T. (2023). "New species of Tanaidacea from Cretaceous Kachin amber, with a brief review of the fossil record of tanaidacean crustaceans". Fossil Record. 26 (1): 39–50. doi:10.3897/fr.26.99995. S2CID 256482676.
  87. Fraaije, R. H. B.; van Bakel, B. W. M.; Guinot, D.; Jagt, J. W. M. (2023). "Validation of Tanidromites maerteni Fraaije, Van Bakel, Guinot & Jagt, a species of crab (Crustacea, Decapoda, Brachyura) from Middle Jurassic (Bajocian) deposits of Maizet, Calvados, northwest France". Zootaxa. 5318 (3): 437–438. doi:10.11646/zootaxa.5318.3.9. PMID 37518370. S2CID 260017811.
  88. Fraaije, R. H. B.; van Bakel, B. W. M.; Guinot, D.; Jagt, J. W. M. (2013). "A new Middle Jurassic (Bajocian) homolodromioid crab from northwest France; the earliest record of the Tanidromitidae". Boletín de la Sociedad Geológica Mexicana. 65 (2): 249–254. doi:10.18268/BSGM2013v65n2a6.
  89. Smith, C. P. A.; Aubier, P.; Charbonnier, S.; Laville, T.; Olivier, N.; Escarguel, G.; Jenks, J. F.; Bylund, K. G.; Fara, E.; Brayard, A. (2023). "Closing a major gap in mantis shrimp evolution - first fossils of Stomatopoda from the Triassic". Bulletin of Geosciences. 98 (1): 95–110. doi:10.3140/bull.geosci.1864. S2CID 258089800.
  90. Kato, H.; Taru, H.; Haga, T.; Sugita, Y. (2023). "Decapod crustaceans from the Miocene Itsukaichi Basin, western Tokyo, Japan, including a new species of Trichopeltarion (Brachyura: Trichopeltariidae)". Bulletin of the Mizunami Fossil Museum. 50 (1): 21–35. doi:10.50897/bmfm.50.1_21.
  91. Chény, C.; Charbonnier, S.; Audo, D. (2023). "Middle Jurassic lobsters (Crustacea, Decapoda) from Normandy, France". Geodiversitas. 45 (4): 139–161. doi:10.5252/geodiversitas2023v45a4. S2CID 257696140.
  92. Ossó, À.; Ng, P. K. L. (2023). "On the systematic placement of the fossil crab Lathahypossia aculeata (Busulini, Tessier & Visentin, 1984) (Crustacea: Decapoda: Brachyura)". Zootaxa. 5351 (2): 265–275. doi:10.11646/zootaxa.5351.2.4.
  93. Lima, D.; Alencar, D. R.; Santana, W.; Oliveira, N. C.; Saraiva, A. Á. F.; Oliveira, G. R.; Boyko, C. B.; Pinheiro, A. P. (2023). "110-million-years-old fossil suggests early parasitism in shrimps". Scientific Reports. 13 (1). 14549. doi:10.1038/s41598-023-40554-2. PMC 10477257. PMID 37666850.
  94. Schweitzer, C. E.; Feldmann, R. M. (2023). "Selective extinction at the end-Cretaceous and appearance of the modern Decapoda". Journal of Crustacean Biology. 43 (2). ruad018. doi:10.1093/jcbiol/ruad018.
  95. Luo, Z.; Wang, R.; Amuti, A.; Deng, Y.; Sun, Y.; Qie, W.; Song, J. (2023). "Late Carboniferous (Pennsylvanian) ostracods from East Junggar in Xinjiang, northwestern China". Alcheringa: An Australasian Journal of Palaeontology. 47: 31–44. doi:10.1080/03115518.2022.2157047. S2CID 256215419.
  96. Tanaka, G. (2023). "Paleogeographical and paleoenvironmental significance of ostracodes from the Pennsylvanian Nagaiwa Formation, northeast Japan". Journal of Paleontology. 97 (Supplement S92): 1–33. Bibcode:2023JPal...97S...1T. doi:10.1017/jpa.2022.108. S2CID 257666299.
  97. Hawramy, O. A.; Al-Obidee, W. Y.; Aziz, N. M.; Zhang, X. (2023). "Campanian-Maastrichtian Ostracods (Crustacea) From the Shiranish Formation, Dukan Area, Kurdistan Province, Northern Iraq". Iraqi Geological Journal. 56 (1C): 74–93. doi:10.46717/igj.56.1C.6ms-2023-3-17. S2CID 257908690.
  98. Camilleri, T. T. A.; Weldon, E. A.; Warne, M. T. (2023). "Early Devonian Ostracoda from the Norton Gully Sandstone, southeastern Australia". Alcheringa: An Australasian Journal of Palaeontology: 1–13. doi:10.1080/03115518.2023.2223658. S2CID 260363168.
  99. Khosla, A.; Verma, O.; Kania, S.; Lucas, S. (2023). "Indian Late Cretaceous-Early Palaeocene Deccan Microbiota from the Intertrappean Beds of the Chhindwara District, Madhya Pradesh and Their Systematic Palaeontology". In A. Khosla; O. Verma; S. Kania; S. Lucas (eds.). Microbiota from the Late Cretaceous-Early Palaeocene Boundary Transition in the Deccan Intertrappean Beds of Central India. Systematics and Palaeoecological, Palaeoenvironmental and Palaeobiogeographical Implications. Topics in Geobiology. Vol. 54. Springer. pp. 77–205. doi:10.1007/978-3-031-28855-5_4. ISBN 978-3-031-28854-8.
  100. Perrier, V.; Perrichon, G.; Nesme, F.; Groos-Uffenorde, H.; Lorenzo, S.; Gutiérrez-Marco, J. C. (2023). "Ecologically distinct myodocope ostracod faunas from a single horizon in the late Silurian of Spain". Revue de Micropaléontologie. 80. 100729. doi:10.1016/j.revmic.2023.100729. S2CID 259584606.
  101. Williams, M.; Komatsu, T.; Nguyen, P. D.; Siveter, D. J.; McGairy, A.; Bush, H.; Goodall, R. H.; Harvey, T. H. P.; Stocker, C. P.; Legrand, J.; Yamada, T.; Miller, C. G. (2023). "Ostracods from the Upper Silurian Si Ka Formation, Northern Vietnam, and Their Paleobiogeographical Significance". Paleontological Research. 27 (3): 261–276. doi:10.2517/PR210032. S2CID 255441183.
  102. Zamudio, M. B.; Carignano, A. P. (2023). "Upper Miocene calcareous microfossils (Foraminifera and Ostracoda) from northwestern Argentina". Publicación Electrónica de la Asociación Paleontológica Argentina. 23 (2): 27–44. doi:10.5710/PEAPA.12.04.2023.455. S2CID 259866665.
  103. Shahin, A.; El Khawagah, S.; Shahin, B. (2023). "Implication of middle Eocene to early Miocene ostracodes from the N. El Faras-1X Well, Qattara Depression, Egypt, for paleobathymetry and paleobiogeographic reconstruction". Marine Micropaleontology. 181. 102244. Bibcode:2023MarMP.181j2244S. doi:10.1016/j.marmicro.2023.102244. S2CID 258158689.
  104. Karpuk, M. S. (2023). "New Data on Planktonic Foraminifera and Ostracods from the Barremian(?)–Aptian of the Eastern Crimea: Stratigraphy and Paleoecology". Stratigraphy and Geological Correlation. 31 (2): 89–108. Bibcode:2023SGC....31...89K. doi:10.1134/S0869593823020028. S2CID 258336679.
  105. Santos Filho, M. A. B.; Ceolin, D.; Fauth, G.; Lima, F. H. O. (2023). "Ostracods from the Barbalha and Crato formations, Aptian of the Araripe Basin, northeast Brazil". Zootaxa. 5319 (3): 332–350. doi:10.11646/zootaxa.5319.3.2. PMID 37518227. S2CID 260213787.
  106. Antonietto, L. S.; Brandão, S. N. (2023). "Ideluralia nom. nov., a new name for the ostracode genus Bairdiella Egorova, 1960". Revista Brasileira de Paleontologia. 26 (2): 144. doi:10.4072/rbp.2023.2.06. S2CID 259941046.
  107. Forel, M.-B.; Chitnarin, A. (2023). "The Permian and Triassic history of the ostracod genus Liuzhinia". Revue de Micropaléontologie. 78. 100714. doi:10.1016/j.revmic.2023.100714. S2CID 257801019.
  108. Danielopol, D. L.; Cabral, M. C.; Horne, D. J.; Namiotko, T.; Lord, A. R. (2023). "Reconciling diagnostic traits in living and fossil taxa: The taxonomy and evolution of the genus Microceratina (Crustacea, Ostracoda, Cytheruridae)". Zootaxa. 5244 (4): 301–340. doi:10.11646/zootaxa.5244.4.1. PMID 37044458. S2CID 257061609.
  109. Gale, A.; Keupp, H.; Schweigert, G.; Sell, J. (2023). "A new phosphatic cirripede from the Carnian (Upper Triassic) of Bavaria, Germany". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 309 (1): 19–29. doi:10.1127/njgpa/2023/1145. S2CID 260656539.
  110. De Schutter, P. J.; Everaert, S.; Gale, A.; Van Remoortel, W.; De Borger, G.; Sakala, J.; Koutecký, V.; Hoedemakers, K. (2023). "An exceptional concentration of marine fossils associated with wood-fall in the Terhagen Member (Boom Formation; Schelle, Belgium), Rupelian of the southern North Sea Basin". Geologica Belgica. 26 (1–2): 41–78. doi:10.20341/gb.2023.003. S2CID 260401823.
  111. Li, G. (2023). "First Discovery of the Spinicaudatan Genus Carapacestheria Shen, 1994 in Asia". Paleontological Research. 28 (1): 71–82. doi:10.2517/PR220025. S2CID 257962700.
  112. Tang, H. Y.; Mychko, E. V.; Feldmann, R. M.; Schweitzer, C. E.; Shaari, H.; Sone, M. (2023). "Validation of Malayacyclus Tang, Mychko, Feldmann, Schweitzer, Shaari & Sone, a cyclidan crustacean from the Early Carboniferous of Terengganu, Malaysia". Zootaxa. 5318 (3): 439–440. doi:10.11646/zootaxa.5318.3.10. PMID 37518369. S2CID 260026897.
  113. Tang, H. Y.; Mychko, E. V.; Feldmann, R. M.; Schweitzer, C. E.; Shaari, H.; Sone, M. (2021). "Malayacyclus gen. nov., the first Southeast Asian Cyclida (Crustacea) from the Early Carboniferous of Terengganu, Malaysia". Geological Journal. 56 (12): 6022–6030. doi:10.1002/gj.4128. S2CID 233522378.
  114. Paterson, J. R.; García-Bellido, D. C.; Edgecombe, G. D. (2023). "The early Cambrian Emu Bay Shale radiodonts revisited: morphology and systematics". Journal of Systematic Palaeontology. 21 (1). 2225066. doi:10.1080/14772019.2023.2225066. S2CID 259719252.
  115. Zhang, M.; Wu, Y.; Lin, W.; Ma, J.; Wu, Y.; Fu, D. (2023). "Amplectobeluid Radiodont Guanshancaris gen. nov. from the Lower Cambrian (Stage 4) Guanshan Lagerstätte of South China: Biostratigraphic and Paleobiogeographic Implications". Biology. 12 (4). 583. doi:10.3390/biology12040583. PMC 10136193. PMID 37106783.
  116. Potin, G. J.-M.; Gueriau, P.; Daley, A. C. (2023). "Radiodont frontal appendages from the Fezouata Biota (Morocco) reveal high diversity and ecological adaptations to suspension-feeding during the Early Ordovician". Frontiers in Ecology and Evolution. 11. 1214109. doi:10.3389/fevo.2023.1214109.
  117. Moysiuk, J.; Caron, J.-B. (2023). "A quantitative assessment of ontogeny and molting in a Cambrian radiodont and the evolution of arthropod development". Paleobiology: 1–16. doi:10.1017/pab.2023.18. S2CID 260850034.
  118. Bicknell, R. D. C.; Schmidt, M.; Rahman, I. A.; Edgecombe, G. D.; Gutarra, S.; Daley, A. C.; Melzer, R. R.; Wroe, S.; Paterson, J. R. (2023). "Raptorial appendages of the Cambrian apex predator Anomalocaris canadensis are built for soft prey and speed". Proceedings of the Royal Society B: Biological Sciences. 290 (2002). 20230638. doi:10.1098/rspb.2023.0638. PMC 10320336. PMID 37403497.
  119. Wernette, S. J.; Hughes, N. C.; Myrow, P. M.; Sardsud, A. (2023). "Trilobites of Thailand's Cambrian–Ordovician Tarutao Group and their geological setting". Papers in Palaeontology. 9 (5). e1516. doi:10.1002/spp2.1516.
  120. Ingham, J. K.; Fortey, R. A. (2023). "Review of the Ordovician pelagic trilobite Ellipsotaphrus (Cyclopygoidea, Ellipsotaphridae) and its allies, with new discoveries from Girvan, Ayrshire". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 113 (4): 313–336. doi:10.1017/S1755691022000263. S2CID 256292161.
  121. Smith, P. M.; Allen, H. J. (2023). "Early Ordovician trilobites from Barnicarndy 1 stratigraphic well of the southern Canning Basin, Western Australia". Alcheringa: An Australasian Journal of Palaeontology: 1–58. doi:10.1080/03115518.2023.2226194. S2CID 260724589.
  122. Kerber, G.; Pacheco, M. L. A. F.; Horodyski, R. S.; Graciolli, G. (2023). "Revealing new trilobites from the early Devonian Alto Garças Sub-basin, Brazil". Historical Biology: An International Journal of Paleobiology: 1–17. doi:10.1080/08912963.2023.2209098. S2CID 258593725.
  123. Westrop, S. R.; Eoff, J. D. (2023). "A Jiangshanian (Cambrian; Furongian) trilobite fauna from the Cow Head Group, western Newfoundland". Canadian Journal of Earth Sciences. 60 (8): 1244–1264. doi:10.1139/cjes-2023-0036. S2CID 260397862.
  124. Sun, Z.; Yang, A.; Zhao, F.; Zhuravlev, A. Yu.; Pan, B.; Hu, C.; Feng, Q.; Chen, X.; Zhu, M. (2023). "New trilobite assemblage from the lower Cambrian (upper Stage 4) of the Lake Zone, western Mongolia". Journal of Paleontology. 97 (3): 577–590. doi:10.1017/jpa.2023.23. S2CID 259770938.
  125. Müller, P.; Hahn, G. (2023). "New data on trilobites of the Hillershausen Formation (Viséan, Rhenish Massif, Germany)". Dortmunder Beiträge zur Landeskunde - naturwissenschaftliche Mitteilungen. 52: 71–131.
  126. Basse, M.; Lemke, U. (2023). "Class Trilobita in the Wocklum Limestone of the northern Rhenish Massif east of the Rhine (late Famennian, late Devonian) – Part 2. Phacopinae (Dianops, Rabienops, Spinicryphops, and Weyerites), with new species of Dianops and Rabienops". Dortmunder Beiträge zur Landeskunde - naturwissenschaftliche Mitteilungen. 52: 133–181.
  127. Adrain, J. M.; Pérez-Peris, F. (2023). "Funeralaspis n. gen.: a new odontopleurine trilobite from the early Middle Ordovician (Dapingian) of Death Valley, eastern California, USA, and the classification of Ordovician odontopleurines". Zootaxa. 5336 (4): 509–529. doi:10.11646/zootaxa.5336.4.3.
  128. Peng, S.-C.; Babcock, L. E.; Yang, X.-F.; Zhu, X.-J. (2023). "First complete specimens of Karslanus (Trilobita, Dameselloidea) from Longha Formation (Cambrian: Guzhangian), Yunnan, South China". Palaeoworld. doi:10.1016/j.palwor.2023.05.004. S2CID 258950129.
  129. Peng, S.-C.; Babcock, L. E.; Yang, X.-F.; Zhu, X.-J.; Liu, Y. (2023). "A new dameselloid trilobite from the Fulu Biota, Longha Formation (Cambrian: Guzhangian), Yunnan, South China, and revised classification of dameselloids". Palaeoworld. doi:10.1016/j.palwor.2023.01.006. S2CID 255934538.
  130. Holloway, D. J. (2023). "The trilobites Mitroplax gen. nov. and Spiniscutellum (Scutelluidae) from the Lower Devonian of Victoria, Australia". Bulletin of Geosciences. 98 (2): 181–198. doi:10.3140/bull.geosci.1879. S2CID 259614186.
  131. Blackwell, S. R.; Westrop, S. R. (2023). "A new Cambrian (Jiangshanian, Sunwaptan) trilobite fauna from Oklahoma and its biostratigraphic significance". Journal of Paleontology: 1–26. doi:10.1017/jpa.2023.40. S2CID 259872800.
  132. Tortello, M. F. (2023). "Trilobites from the Cedaria prolifica Zone (Cambrian, upper Guzhangian) of the Precordillera of Mendoza, western Argentina". Journal of Paleontology. 97 (3): 591–605. doi:10.1017/jpa.2023.34. S2CID 259384662.
  133. Zong, R.-W. (2023). "Variation in eye lenses of two new Late Devonian phacopid trilobites from western Junggar, NW China". Journal of Paleontology: 1–15. doi:10.1017/jpa.2023.31. S2CID 258981236.
  134. Zong, R.-W. (2023). "Variation in eye lenses of two new Late Devonian phacopid trilobites from western Junggar, NW China – CORRIGENDUM". Journal of Paleontology: 1. doi:10.1017/jpa.2023.42.
  135. Korovnikov, I. V. (2023). "New species of the genus Oryctocephalus Walcott from the Middle Cambrian of the Siberian Platform". Paleontological Journal. 57 (4): 410–416. doi:10.1134/S0031030123040068. S2CID 261104180.
  136. Basse, M.; Schöning, H. (2023). "The Proetinae (Trilobita) of the German Silurian. 1. Plesiowensus, Signatoproetus n.g., and Pulcherproetus". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 309 (3): 209–254. doi:10.1127/njgpa/2023/1160.
  137. Laibl, L.; Saleh, F.; Pérez-Peris, F. (2023). "Drifting with trilobites: The invasion of early post-embryonic trilobite stages to the pelagic realm". Palaeogeography, Palaeoclimatology, Palaeoecology. 613. 111403. Bibcode:2023PPP...613k1403L. doi:10.1016/j.palaeo.2023.111403. S2CID 255913893.
  138. Holmes, J. D. (2023). "Contrasting patterns of disparity suggest differing constraints on the evolution of trilobite cephalic structures during the Cambrian 'explosion'". Palaeontology. 66 (2). e12647. Bibcode:2023Palgy..6612647H. doi:10.1111/pala.12647. S2CID 258071940.
  139. Chen, Z.; Zhao, Y.; Yang, X.; Esteve, J.; Liu, X.; Chen, S. (2023). "Life cycle evolution in the trilobites Balangia and Duyunaspis from the Cambrian Series 2 (Stage 4) of South China". PeerJ. 11. e15068. doi:10.7717/peerj.15068. PMC 10100804. PMID 37065692.
  140. Wang, M.; Peng, S.; Zhang, X. (2023). "Taxonomic revision of the Cambrian trilobite Abadiella and its stratigraphic significance in Gondwana". Journal of Asian Earth Sciences. 105855. doi:10.1016/j.jseaes.2023.105855.
  141. Srivastava, S.; Hughes, N. C. (2023). "Morphology, variation, and systematics of the late Cambrian Laurentian dikelocephalid trilobite Walcottaspis vanhornei (Walcott, 1914)". Journal of Paleontology: 1–22. doi:10.1017/jpa.2023.29. S2CID 259391991.
  142. Hou, J.-B.; Hughes, N. C.; Hopkins, M. J. (2023). "Gill grooming in middle Cambrian and Late Ordovician trilobites". Geological Magazine. 160 (5): 905–910. Bibcode:2023GeoM..160..905H. doi:10.1017/S001675682300002X. S2CID 256917018.
  143. Hou, J.-B.; Hughes, N. C.; Hopkins, M. J.; Shu, D. (2023). "Gill function in an early arthropod and the widespread adoption of the countercurrent exchange mechanism". Royal Society Open Science. 10 (8). 230341. doi:10.1098/rsos.230341. PMC 10427831. PMID 37593708.
  144. Losso, S. R.; Thines, J. E.; Ortega-Hernández, J. (2023). "Taphonomy of non-biomineralized trilobite tissues preserved as calcite casts from the Ordovician Walcott-Rust Quarry, USA". Communications Earth & Environment. 4. 330. doi:10.1038/s43247-023-00981-5.
  145. Laibl, L.; Drage, H. B.; Pérez-Peris, F.; Schöder, S.; Saleh, F.; Daley, A. C. (2023). "Babies from the Fezouata Biota: Early developmental trilobite stages and their adaptation to high latitudes". Geobios. doi:10.1016/j.geobios.2023.06.005. S2CID 260694824.
  146. Schoenemann, B.; Clarkson, E. N. K. (2023). "The median eyes of trilobites". Scientific Reports. 13 (1). 3917. Bibcode:2023NatSR..13.3917S. doi:10.1038/s41598-023-31089-7. PMC 9995485. PMID 36890176.
  147. Esteve, J.; Hughes, N. C. (2023). "Developmental and functional controls on enrolment in an ancient, extinct arthropod". Proceedings of the Royal Society B: Biological Sciences. 290 (2000). 20230871. doi:10.1098/rspb.2023.0871. PMC 10265026. PMID 37312547.
  148. Esteve, J.; López-Pachón, M. (2023). "Swimming and feeding in the Ordovician trilobite Microparia speciosa shed light on the early history of nektonic life habits". Palaeogeography, Palaeoclimatology, Palaeoecology. 625. 111691. Bibcode:2023PPP...625k1691E. doi:10.1016/j.palaeo.2023.111691. S2CID 259788614.
  149. Kraft, P.; Vaškaninová, V.; Mergl, M.; Budil, P.; Fatka, O.; Ahlberg, P. E. (2023). "Uniquely preserved gut contents illuminate trilobite palaeophysiology". Nature. 622 (7983): 545–551. doi:10.1038/s41586-023-06567-7. PMC 10584673. PMID 37758946.
  150. Gishlick, A. D.; Fortey, R. A. (2023). "Trilobite tridents demonstrate sexual combat at 400 Mya". Proceedings of the National Academy of Sciences of the United States of America. 120 (4). e2119970120. Bibcode:2023PNAS..12019970G. doi:10.1073/pnas.2119970120. PMC 9942788. PMID 36649420.
  151. Ma, J.; Yin, J.; Liu, Y.; Du, X.; Liu, S.; Zong, R. (2023). "The latest encrinurid trilobites from the Lower Devonian of Xinjiang, Northwest China". Geological Magazine: 1–8. doi:10.1017/S0016756823000596.
  152. Bault, V. (2023). "Trilobites showed strong resilience capacity through the Late Devonian events despite an inexorable decline". Palaeogeography, Palaeoclimatology, Palaeoecology. 111807. doi:10.1016/j.palaeo.2023.111807.
  153. Esteve, J.; Rubio, P. (2023). "Understanding locomotion in trilobites by means of three-dimensional models". iScience. 26 (9). 107512. doi:10.1016/j.isci.2023.107512. PMC 10460995. PMID 37646017. S2CID 260412390.
  154. Bault, V.; Crônier, C.; Monnet, C.; Balseiro, D.; Serra, F.; Waisfeld, B.; Bignon, A.; Rustán, J. J. (2023). "Rise and fall of the phacopids: the morphological history of a successful trilobite family". Palaeontology. 66 (5). e12673. doi:10.1111/pala.12673.
  155. Laville, T.; Forel, M.-B.; Charbonnier, S. (2023). "Re-appraisal of thylacocephalans (Euarthropoda, Thylacocephala) from the Jurassic La Voulte-sur-Rhône Lagerstätte". European Journal of Taxonomy (898): 1–61. doi:10.5852/ejt.2023.898.2295.
  156. Briggs, Derek E. G.; Siveter, David J.; Siveter, Derek J.; Sutton, Mark D.; Legg, David; Lamsdell, James C. (2023). "A vicissicaudatan arthropod from the Silurian Herefordshire Lagerstätte, UK". Royal Society Open Science. 10 (8). 230661. doi:10.1098/rsos.230661. PMC 10394423. PMID 37538743.
  157. Weidner, T.; Nielsen, A. T.; Ebbestad, J. O. R. (2023). Middle Cambrian agnostoids and trilobites from the Lower Allochthon, Swedish Caledonides. Fossils and Strata Series. Vol. 68. pp. 1–121. doi:10.18261/9788215068022-2023. ISBN 978-8-215-06801-5. S2CID 259227386.
  158. Sánchez-García, A.; Sendra, A.; Davis, S.; Grimaldi, D. A. (2023). "Fossil diversity in 'dawn' hexapods (Diplura: Projapygoidea), with direct evidence for being chemically predaceous in the Cretaceous". Zoological Journal of the Linnean Society. 198 (3): 847–870. doi:10.1093/zoolinnean/zlac101.
  159. Haug, J. T.; Fraaije, R. H. B.; Haug, C. (2023). "A new species of possible archipolypodan millipede from the Carboniferous of the Netherlands with unusually long tergites". Comptes Rendus Palevol. 22 (29): 595–604. doi:10.5852/cr-palevol2023v22a29.
  160. Sánchez-García, A.; Sendra, A.; Davis, S. R.; Grimaldi, D. A. (2023). "'Dawn' hexapods in Cenozoic ambers (Diplura: Campodeoidea)". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlad118.
  161. Haug, G. T.; Haug, J. T.; Haug, C. (2023). "Convergent evolution of defensive appendages – a lithobiomorph-like centipede with a scolopendromorph-type ultimate leg from about 100 million-year-old amber". Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-023-00581-3. S2CID 259349020.
  162. Zong, R.; Edgecombe, G. D.; Liu, B.; Wang, Y.; Yin, J.; Ma, J.; Xu, H. (2023). "Silurian freshwater arthropod from northwest China". Papers in Palaeontology. 9 (2). e1488. doi:10.1002/spp2.1488. S2CID 257843305.
  163. Zhu, Y.; Zeng, H.; Liu, Y.; Zhao, F. (2023). "New artiopodan euarthropods from the Chengjiang fauna (Cambrian, Stage 3) at Malong, Yunnan, China". Acta Palaeontologica Polonica. 68 (3): 427–440. doi:10.4202/app.01080.2023.
  164. Du, K.; Bruton, D. L.; Yang, J.; Zhang, X. (2023). "An early Cambrian Sidneyia (Arthropoda) resolves the century-long debate of its head organization". Science China Earth Sciences. 66 (3): 521–527. Bibcode:2023ScChD..66..521D. doi:10.1007/s11430-022-1019-8. S2CID 257177978.
  165. Edgecombe, G. D.; Strange, S. E.; Popovici, G.; West, T.; Vahtera, V. (2023). "An Eocene fossil plutoniumid centipede: a new species of Theatops from Baltic Amber (Chilopoda: Scolopendromorpha)". Journal of Systematic Palaeontology. 21 (1). 2228796. doi:10.1080/14772019.2023.2228796. S2CID 260045944.
  166. Berks, H. O.; Nielsen, M. L.; Flannery-Sutherland, J.; Nielsen, A. T.; Park, T.-Y. S.; Vinther, J. (2023). "A possibly deep branching artiopodan arthropod from the lower Cambrian Sirius Passet Lagerstätte (North Greenland)". Papers in Palaeontology. 9 (3). e1495. doi:10.1002/spp2.1495. S2CID 259253098.
  167. O'Flynn, R. J.; Liu, Y.; Hou, X.; Mai, H.; Yu, M.; Zhuang, S.; Williams, M.; Guo, J.; Edgecombe, G. D. (2023). "The early Cambrian Kylinxia zhangi and evolution of the arthropod head". Current Biology. doi:10.1016/j.cub.2023.08.022. PMID 37643622.
  168. Zhang, C.; Liu, Y.; Ortega-Hernández, J.; Wolfe, J. M.; Jin, C.; Mai, H.; Hou, X.; Guo, J.; Zhai, D. (2023). "Three-dimensional morphology of the biramous appendages in Isoxys from the early Cambrian of South China, and its implications for early euarthropod evolution". Proceedings of the Royal Society B: Biological Sciences. 290 (1997). 20230335. doi:10.1098/rspb.2023.0335. PMC 10113025. PMID 37072042.
  169. Ma, J.; Pates, S.; Wu, Y.; Lin, W.; Liu, C.; Wu, Y.; Zhang, M.; Fu, D. (2023). "Ontogeny and brooding strategy of the early Cambrian arthropod Isoxys minor from the Qingjiang biota". Frontiers in Ecology and Evolution. 11. 1174564. doi:10.3389/fevo.2023.1174564.
  170. Drage, H. B.; Legg, D. A.; Daley, A. C. (2023). "Novel marrellomorph moulting behaviour preserved in the Lower Ordovician Fezouata Shale, Morocco". Frontiers in Ecology and Evolution. 11. 1226924. doi:10.3389/fevo.2023.1226924.
  171. Laibl, L.; Gueriau, P.; Saleh, F.; Pérez-Peris, F.; Lustri, L.; Drage, H. B.; Bath Enright, O. G.; Potin, G. J.-M.; Daley, A. C. (2023). "Early developmental stages of a Lower Ordovician marrellid from Morocco suggest simple ontogenetic niche differentiation in early euarthropods". Frontiers in Ecology and Evolution. 11. 1232612. doi:10.3389/fevo.2023.1232612.
  172. Laville, T.; Hegna, T. A.; Forel, M.-B.; Darroch, S.; Charbonnier, S. (2023). "New look at Concavicaris woodfordi (Euarthropoda: Pancrustacea?) using micro-computed tomography". Palaeontologia Electronica. 26 (1). 26.1.a1. doi:10.26879/1218.
  173. Wellman, C. H.; Lopes, G.; McKellar, Z.; Hartley, A. (2023). "Age of the basal 'Lower Old Red Sandstone' Stonehaven Group of Scotland: The oldest reported air-breathing land animal is Silurian (late Wenlock) in age". Journal of the Geological Society. doi:10.1144/jgs2023-138.
  174. Lheritier, M.; Perroux, M.; Vannier, J.; Escarguel, G.; Wesener, T.; Moritz, L.; Chabard, D.; Adrien, J.; Perrier, V. (2023). "Fossils from the Montceau-les-Mines Lagerstätte (305 Ma) shed light on the anatomy, ecology and phylogeny of Carboniferous millipedes". Journal of Systematic Palaeontology. 21 (1). 2169891. doi:10.1080/14772019.2023.2169891. S2CID 256977924.
  175. Kimmig, J.; Pates, S.; LaVine, R. J.; Krumenacker, L. J.; Whitaker, A. F.; Strotz, L. C.; Jamison, P. G.; Gunther, V. G.; Gunther, G.; Witte, M.; Daley, A. C.; Lieberman, B. S. (2023). "New soft-bodied panarthropods from diverse Spence Shale (Cambrian; Miaolingian; Wuliuan) depositional environments". Journal of Paleontology: 1–24. doi:10.1017/jpa.2023.24. S2CID 259014568.
  176. Naimark, E. B.; Sizov, A. V.; Khubanov, V. B. (2023). "Kimiltei Is a New Late Cambrian Lagerstätte with the Faunistic Complex of Arthropods (Euthycarcinoidae, Synziphosurina, and Chasmataspidida) in the Irkutsk Region". Doklady Earth Sciences. 512 (1): 859–870. doi:10.1134/S1028334X2360127X. S2CID 260786737.
  177. Braddy, S. J. (2023). "A new arthropod resting trace from the middle Cambrian of Texas". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 309 (3): 291–300. doi:10.1127/njgpa/2023/1163.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.