Aditya-L1
Aditya-L1 (/ɑːd̪it̪jə/)[lower-alpha 1](from Sanskrit: Aditya, "sun" and L1, "Lagrange 1 Point") a coronagraphy spacecraft to study the solar atmosphere, designed and developed by the Indian Space Research Organisation (ISRO) and various other Indian research institutes.[1] It will be orbiting at about 1.5 million km from Earth in a halo orbit around the L1 Lagrange point between the Earth and the Sun where it will study the solar atmosphere, solar magnetic storms, and their impact on the environment around the Earth.[7]
Mission type | Solar observation |
---|---|
Operator | ISRO |
COSPAR ID | 2023-132A |
SATCAT no. | 57754 |
Website | www |
Mission duration | 5.2 years (planned)[1] 1 month and 23 days (elapsed) |
Spacecraft properties | |
Spacecraft | PSLV-XL/C-57 |
Spacecraft type | PSLV |
Bus | I-1K[2] |
Manufacturer | ISRO / IUCAA / IIA |
Launch mass | 1,475 kg (3,252 lb)[3] |
Payload mass | 244 kg (538 lb)[1] |
Start of mission | |
Launch date | 2 September 2023 IST (06:20 UTC)[4][5] | , 11:50
Rocket | PSLV-XL |
Launch site | Satish Dhawan Space Centre |
Contractor | ISRO |
Orbital parameters | |
Reference system | Sun–Earth L1 orbit |
Regime | Halo orbit |
Period | 177.86 days[6] |
Epoch | January 2024 (planned) |
Mission Insignia |
It is the first Indian mission dedicated to observing the Sun. Nigar Shaji is the project's director.[8][9][10][11] Aditya-L1 was launched aboard the PSLV C57 at 11:50 IST on 2 September 2023,[12][4][5] ten days after the successful landing of ISRO's Moon mission, Chandrayaan-3. It successfully achieved its intended orbit nearly an hour later, and separated from its fourth stage at 12:57 IST.[13] It is projected to reach its designated orbit at the L1 point approximately 127 days after its launch.[14]
Science objectives
The main objectives of Aditya L1 are:
- To observe the dynamics of the Sun's chromosphere and corona:
- To study chromospheric and coronal heating, the physics of partially ionised plasma, of coronal mass ejections (CMEs) and their origins, of the coronal magnetic field and heat transfer mechanisms, and flare exchanges
- To observe of the physical particle environment around its position
- To determine the sequence of processes in multiple layers below the corona that lead to solar eruptions
- To study space weather, and the origin, composition and dynamics of solar wind[15]
History
Aditya was conceptualised in January 2008 by the Advisory Committee for Space Sciences (ADCOS).[16][17] It was initially envisaged as a small 400 kg (880 lb) satellite in a Low Earth Orbit (800 km) with a coronagraph to study the solar corona. An experimental budget of ₹3 crore was allocated for the financial year 2016–2017.[18][19][20] The scope of the mission has since been expanded and it became a comprehensive solar and space environment observatory to be placed at Lagrange point L1,[21] hence the mission was renamed "Aditya-L1". As of July 2019, the mission has an allocated cost of ₹378 crores excluding launch costs.[5]
Overview
The Aditya-L1 mission will take around 109 Earth days after launch[22] to reach the halo orbit around the L1 point, which is about 1,500,000 km (930,000 mi) from Earth. The spacecraft is planned to remain in the halo orbit for its mission duration while being maintained at a stationkeeping Δv of 0.2–4 m/s per year.[23] The 1,500 kg (3,300 lb) satellite carries seven science payloads with various objectives, including instruments to measure coronal heating, solar wind acceleration, coronal magnetometry, origin and monitoring of near-UV solar radiation (which drives Earth's upper atmospheric dynamics and global climate), coupling of the solar photosphere to the chromosphere and corona,[24] and in-situ characterisations of the space environment around Earth by measuring energetic particle fluxes and magnetic fields of the solar wind, and solar magnetic storms.[1]
Aditya-L1 will provide observations of the sun's photosphere, chromosphere and corona. Its scientific payloads must be placed outside the interference from the Earth's magnetic field and hence could not have been useful in the low Earth orbit as proposed in the original Aditya mission concept.[25]
One of the major unsolved problems in the field of solar physics is coronal heating. The upper atmosphere of the Sun has a temperature of 1,000,000 K (1,000,000 °C; 1,800,000 °F) whereas the lower atmosphere is just 6,000 K (5,730 °C; 10,340 °F). In addition, it is not understood exactly how the Sun's radiation affects the dynamics of the Earth's atmosphere on a shorter as well as a longer time scale. The mission will obtain near-simultaneous images of the different layers of the Sun's atmosphere, which will reveal the ways in which energy is channeled and transferred from one layer to another. Thus, the Aditya-L1 mission will enable a comprehensive understanding of the dynamical processes of the Sun and address some of the outstanding problems in solar physics and heliophysics.
Payloads
The instruments of Aditya-L1 are tuned to observe the solar atmosphere, mainly the chromosphere and corona. In-situ instruments will observe the local environment at L1. There are seven payloads on-board, with four for remote sensing of the Sun and three for in-situ observation. The payloads have been developed by different laboratories in the country with close collaborations of various ISRO centres.[26]
Type | Sl.No | Payload | Capability | Laboratories |
---|---|---|---|---|
Remote Sensing Payloads | 1 | Visible Emission Line Coronagraph (VELC) | Corona Imaging and spectroscopy | Indian Institute of Astrophysics, Bangalore |
2 | Solar Ultraviolet Imaging Telescope (SUIT) | Photosphere and chromosphere imaging-narrow and broadband | Inter University Centre for Astronomy & Astrophysics, Pune | |
3 | Solar Low Energy X-ray Spectrometer (SoLEXS) | Soft X-ray spectrometer: Sun-as-a-star observation | U R Rao Satellite Centre, Bangalore | |
4 | High Energy L1 Orbiting X-ray Spectrometer(HEL1OS) | Hard X-ray spectrometer: Sun-as-a-star observation | ||
In-situ Payloads | 5 | Aditya Solar wind Particle Experiment (ASPEX) | Solar wind and Particle analyzer: Protons and Heavier ions with directions | Physical Research Laboratory, Ahmedabad |
6 | Plasma Analyser Package For Aditya (PAPA) | Solar wind and Particle Analyzer: Electrons and Heavier Ions with directions | Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram | |
7 | Advanced Tri-axial High Resolution Digital Magnetometers | In-situ magnetic field (Bx, By and Bz). | Laboratory for Electro Optics Systems, Bangalore |
Visible Emission Line coronagraph (VELC)
The Visible Emission Line Coronagraph (VELC) is a key instrument on India's Aditya-L1 space solar mission. The VELC is an internally occulted reflective coronagraph designed to fulfil specific observation needs. The instrument allows for high spatial resolution imaging (1.25-2.5 arc seconds) of the Sun's corona, simultaneous observations in three modes (Imaging, Spectroscopy and Spectro-polarimetry), and even utilities artificial intelligence to aid in the detection of coronal mass ejections (CME's).[27]
Solar Ultraviolet Imaging Telescope (SUIT)
The SUIT is an ultraviolet imaging telescope designed to study the solar spectral radiation in the ultraviolet range, using narrowband and broadband spectral filters in the range of 200-400 nm with the hope of developing a better understanding between solar activity and the atmospheric dynamics of Earth. The SUIT provides near-simultaneous coverage of the solar atmosphere, from lower photosphere to the upper chromosphere. The instrument was developed by Inter University Centre for Astronomy and Astrophysics. (lUCAA), in collaboration with ISRO.[27]
Solar Low Energy X-ray Spectrometer (SoLEXS)
The SoLEXS is an X-ray spectrometer designed to continuously measure the solar soft X-ray flux (1 keV-22 keV) from the Sun-Earth Lagrangian point L1. These measurements can be used to better understand the properties of the Sun's corona, in particular, why the temperature of the corona is so high. The SoLEXS will observe solar flares, and in conjunction with data provided by the VELC, will help study the complex thermal properties of the Sun's outer layers.[27]
Mission Profile
Launch
On 2 September 2023, at 11:50 IST, the Polar Satellite Launch Vehicle (PSLV-C57) accomplished a successful launch of the Aditya-L1 from the Second Launch Pad of the Satish Dhawan Space Centre (SDSC) located in Sriharikota.
Aditya-L1, following a flight duration of 63 minutes and 20 seconds, achieved a successful injection into an elliptical orbit around the Earth at 12:54 IST.[28]
Aditya-L1 is scheduled to undergo a series of four Earth-bound orbital maneuvres prior to its injection to a transfer orbit towards the L1 Lagrange point. It is projected to reach its designated orbit at the L1 point approximately 127 days after its launch.[14]
Orbit raising burns
First orbit raising burn
On 3 September 2023, the Aditya-L1 performed its first Earth-bound maneuvre, raising its orbit to a 245 km (152 mi) into 22,459 km (13,955 mi) orbit.[29]
Second orbit raising burn
On 5 September 2023, Aditya-L1 performed its second Earth-bound maneuvre, raising its orbit to a 282 km (175 mi) into 40,225 km (24,995 mi) orbit.
Third orbit raising burn
On 10 September 2023, Aditya-L1 performed its third Earth-bound maneuvre, raising its orbit to a 296 km (184 mi) into 71,767 km (44,594 mi) orbit.
Fourth orbit raising burn
On 15 September 2023, Aditya-L1 performed its fourth Earth-bound maneuvre, raising its original orbit to a 256 km (159 mi) into 121,973 km (75,791 mi) orbit. This is the last of such maneuvres, being directly followed by the Trans-Lagrangian 1 Injection, bound to take place on 19 September.
Trans-Lagrangian 1 Injection
On 19 September 2023, Aditya-L1 performed its last maneuvre around Earth to escape its orbit and headed towards the Lagrange 1 point. It will take at least 4 months to further reach its destination, 1.5 million kilometers away.[30]
On 30 September 2023, Aditya-L1 had escaped the Earth’s sphere of influence and was on the way to the Lagrange 1 point.[30]
Trajectory correction maneuvre
On 6 October 2023, Aditya-L1 performed a Trajectory Correction maneuvre (TCM1). It was needed to correct the trajectory evaluated after tracking the Trans-Lagrangian Point 1 Insertion (TL1I) maneuvre performed on September 19, 2023.[31]
Stage and Sequence | Date/Time | Time (IST) | Periapsis | Apoapsis | Orbital Period | Burn TIme | Ref. |
---|---|---|---|---|---|---|---|
Launch | |||||||
Earth Orbit Insertion | 2 September 2023 | 12:54 p.m | 235 km (146 mi) | 19,500 km (12,100 mi) | 22 hours, 46 minutes | [32] | |
Earth Bound maneuvres | |||||||
Earth Bound maneuvre 1 | 3 September 2023 | 11:40 a.m. | 245 km (152 mi) | 22,459 km (13,955 mi) | 39 hours, 20 minutes | [33] | |
Earth Bound maneuvre 2 | 5 September 2023 | 3:00 a.m | 282 km (175 mi) | 40,225 km (24,995 mi) | 4 days, 23 hours and 30 minutes | [34] | |
Earth Bound maneuvre 3 | 10 September 2023 | 2:30 am | 296 km (184 mi) | 71,767 km (44,594 mi) | 4 days, 23 hours and 45 minutes | [35] | |
Earth Bound maneuvre 4 | 15 September 2023 | 2:15 am | 256 km (159 mi) | 121,973 km (75,791 mi) | 3 days, 23 hours and 45 minutes | [36] | |
Trans-Lagrangian Point 1 Injection | 19 September 2023 | 2:00 am | [37] | ||||
Trajectory correction maneuvres | |||||||
Trajectory Correction maneuvre (TCM1) | 6 October 2023 | 16s | [38] | ||||
Halo orbit injection | |||||||
Halo orbit insertion | January 2024 |
Team
- Nigar Shaji - Project director
- Sankarasubramanian K - Principal scientist of the mission[39]
References
- from Sanskrit Āditya, a synonym for the Hindu solar deity Surya
- Somasundaram, Seetha; Megala, S. (25 August 2017). "Aditya-L1 mission" (PDF). Current Science. 113 (4): 610. Bibcode:2017CSci..113..610S. doi:10.18520/cs/v113/i04/610-612. Archived from the original (PDF) on 25 August 2017. Retrieved 25 August 2017.
- Nowakowski, Tomas (4 February 2016). "India's first solar mission to be launched in 2019–20". Space Flight Insider. Archived from the original on 3 September 2023. Retrieved 3 September 2023.
- International Space Conference and Exhibition – DAY 3 (video). Confederation of Indian Industry. 15 September 2021. Event occurs at 2:07:36–2:08:38. Retrieved 18 September 2021 – via YouTube.
- "Moon mission done, ISRO aims for the Sun with Aditya-L1 launch on September 2". The Indian Express. 28 August 2023. Archived from the original on 28 August 2023. Retrieved 28 August 2023.
- Pandey, Geeta (2 September 2023). "Aditya-L1: India launches its first mission to Sun". BBC News. Archived from the original on 2 September 2023. Retrieved 2 September 2023.
- Sreekumar, P. (19 June 2019). "Indian Space Science & Exploration : Global Perspective" (PDF). UNOOSA. p. 8. Archived (PDF) from the original on 30 June 2019. Retrieved 30 June 2019.
- "Aditya – L1 First Indian mission to study the Sun". ISRO. Archived from the original on 3 March 2018. Retrieved 1 June 2017.
- "Meet The Project Director Of Ambitious Mission Aditya-L1 | Nigar Shaji from Tamil Nadu". TimesNow. 2 September 2023. Archived from the original on 2 September 2023. Retrieved 2 September 2023.
- "ISROs Aditya-L1 Solar Mission: Nigar Shaji Addresses After Successful Launch Of First Sun Mission". Zee News. Archived from the original on 2 September 2023. Retrieved 2 September 2023.
- "Meet Nigar Shaji from TN's Tenkasi, Aditya-L1 mission project director". The New Indian Express. Archived from the original on 2 September 2023. Retrieved 2 September 2023.
- "Meet Nigar Shaji, The Project Director Of India's First Sun Mission: 5 Points". NDTV.com. Archived from the original on 2 September 2023. Retrieved 2 September 2023.
- ISRO [@isro] (1 September 2023). "PSLV-C57/Aditya-L1 Mission: The 23-hour 40-minute countdown leading to the launch at 11:50 Hrs. IST on September 2, 2023, has commended today at 12:10 Hrs. The launch can be watched LIVE on ISRO Website isro.gov.in Facebook facebook.com/ISRO YouTube youtube.com/watch?v=_IcgGYZTXQw… DD National TV channel from 11:20 Hrs. IST" (Tweet) – via Twitter.
- "Aditya L1 Mission: Aditya L1 Launch LIVE Updates: Aditya L1 spacecraft successfully separated from PSLV rocket, now en route to Sun-Earth L1 point. ISRO says mission accomplished". The Economic Times. 2 September 2023. Archived from the original on 3 September 2023. Retrieved 2 September 2023.
- "PSLV-C57/ADITYA-L1 Mission". www.isro.gov.in. Archived from the original on 3 September 2023. Retrieved 2 September 2023.
- "ADITYA-L1". www.isro.gov.in. Archived from the original on 3 August 2023. Retrieved 29 August 2023.
- "SAC Industry Portal". www.sac.gov.in. Space Applications Center, Government of India. Archived from the original on 3 August 2022. Retrieved 3 September 2023.
- Teotia, Riya, ed. (14 August 2023). "ISRO shares first images of Aditya-L1 satellite ahead of India's first-ever mission to study the Sun". WION. Archived from the original on 3 September 2023. Retrieved 3 September 2023.
- "Notes on Demands for Grants, 2016–2017" (PDF) (Press release). Department of Space. Archived from the original (PDF) on 17 September 2016. Retrieved 9 September 2016.
- "Aditya gets ready to gaze at the sun". The Hindu. Archived from the original on 26 August 2017. Retrieved 25 August 2017.
- Gandhi, Divya (13 January 2008). "ISRO planning to launch satellite to study the sun". The Hindu. Archived from the original on 15 September 2018. Retrieved 26 August 2017.
- Desikan, Shubashree (15 November 2015). "The sun shines on India's Aditya". The Hindu. Archived from the original on 13 March 2018. Retrieved 12 August 2018.
- "Department Of Space, Annual Report 2019–2020" (PDF). 14 February 2020. Archived (PDF) from the original on 7 October 2021. Retrieved 25 October 2021.
- Muralidharan, Vivek (2017). "Orbit Maintenance Strategies for Sun-Earth/Moon Libration Point Missions: Parameter Selection for Target Point and Cauchy-Green Tensor Approaches". Open Access Theses. West Lafayette, Indiana, United States: M.S. Thesis, Purdue University: 183–194. Archived from the original on 31 August 2023. Retrieved 31 August 2023.
- Wedemeyer-Böhm, S.; Lagg, A.; Nordlund, Å (15 September 2009). "Coupling from the photosphere to the chromosphere and the corona". Space Science Reviews. 144 (1–4): 317–350. doi:10.1007/s11214-008-9447-8. ISSN 0038-6308. Archived from the original on 6 September 2023. Retrieved 6 September 2023.
- "Aditya-L1 First Indian mission to study the Sun". isro.gov.in. Archived from the original on 10 December 2019. Retrieved 19 June 2019.
- "ISRO ADITYA-L1". Archived from the original on 3 August 2023. Retrieved 15 July 2023.
- "ADITYA-L1". www.isro.gov.in. Retrieved 25 October 2023.
- "PSLV-C57 / ADITYA-L1 Mission - Press Release". www.isro.gov.in. Archived from the original on 3 September 2023. Retrieved 3 September 2023.
- @isro (3 September 2023). "Aditya L1" (Tweet). Retrieved 3 September 2023 – via Twitter.
- "ADITYA-L1 Mission Details". www.isro.gov.in. Retrieved 25 October 2023.
- "ADITYA-L1". www.isro.gov.in. Retrieved 30 September 2023.
- ISRO [@isro] (2 September 2023). "The launch of Aditya-L1 by PSLV-C57 is accomplished successfully. The vehicle has placed the satellite precisely into its intended orbit. India's first solar observatory has begun its journey to the destination of Sun-Earth L1 point" (Tweet) – via Twitter.
- ISRO [@isro] (3 September 2023). "The satellite is healthy and operating nominally. The first Earth-bound maneuvre (EBN#1) is performed successfully from ISTRAC, Bengaluru. The new orbit attained is 245km x 22459 km. The next maneuvre (EBN#2) is scheduled for September 5, 2023, around 03:00 Hrs. IST" (Tweet) – via Twitter.
- ISRO [@isro] (4 September 2023). "Aditya-L1 Mission: The second Earth-bound maneuvre (EBN#2) is performed successfully from ISTRAC, Bengaluru. ISTRAC/ISRO's ground stations at Mauritius, Bengaluru and Port Blair tracked the satellite during this operation. The new orbit attained is 282 km x 40225 km. The next maneuvre (EBN#3) is scheduled for September 10, 2023, around 02:30 Hrs. IST" (Tweet) – via Twitter.
- ISRO [@isro] (9 September 2023). "Aditya-L1 Mission:The third Earth-bound maneuvre (EBN#3) is performed successfully from ISTRAC, Bengaluru.ISRO's ground stations at Mauritius, Bengaluru, SDSC-SHAR and Port Blair tracked the satellite during this operation.The new orbit attained is 296 km x 71767 km. The next maneuvre (EBN#4) is scheduled for September 15, 2023, around 02:00 Hrs. IST" (Tweet) – via Twitter.
- ISRO [@isro] (14 September 2023). "Aditya-L1 Mission: The fourth Earth-bound maneuvre (EBN#4) is performed successfully. ISRO's ground stations at Mauritius, Bengaluru, SDSC-SHAR and Port Blair tracked the satellite during this operation, while a transportable terminal currently stationed in the Fiji islands for Aditya-L1 will support post-burn operations. The new orbit attained is 256 km x 121973 km. The next maneuvre Trans-Lagragean Point 1 Insertion (TL1I) a send-off from the Earth is scheduled for September 19, 2023, around 02:00 Hrs.IST" (Tweet) – via Twitter.
- ISRO [@isro] (18 September 2023). "Aditya-L1 Mission: Off to Sun-Earth L1 point! The Trans-Lagrangean Point 1 Insertion (TL1I) maneuvre is performed successfully. The spacecraft is now on a trajectory that will take it to the Sun-Earth L1 point. It will be injected into an orbit around L1 through a maneuver after about 110 days. This is the fifth consecutive time ISRO has successfully transferred an object on a trajectory toward another celestial body or location in space" (Tweet) – via Twitter.
- "ADITYA-L1". www.isro.gov.in. Retrieved 8 October 2023.
- "Educational qualification of scientists behind ISRO's solar mission, Aditya L-1". DNA India. Archived from the original on 4 September 2023. Retrieved 4 September 2023.