Aluminium sulfide

Aluminium sulfide is a chemical compound with the formula Al2S3. This colorless species has an interesting structural chemistry, existing in several forms. The material is sensitive to moisture, hydrolyzing to hydrated aluminum oxides/hydroxides.[1] This can begin when the sulfide is exposed to the atmosphere. The hydrolysis reaction generates gaseous hydrogen sulfide (H2S).

Aluminium sulfide
Names
Other names
Aluminium sulfide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.013.736
EC Number
  • 215-109-0
UNII
  • InChI=1S/2Al.3S/q2*+3;3*-2 checkY
    Key: COOGPNLGKIHLSK-UHFFFAOYSA-N checkY
  • InChI=1/2Al.3S/q2*+3;3*-2
    Key: COOGPNLGKIHLSK-UHFFFAOYAY
  • [Al+3].[Al+3].[S-2].[S-2].[S-2]
Properties
Al2S3
Molar mass 150.158 g/mol
Appearance gray solid
Density 2.02 g/cm3
Melting point 1,100 °C (2,010 °F; 1,370 K)
Boiling point 1,500 °C (2,730 °F; 1,770 K) sublimes
decomposes
Solubility insoluble in acetone
Structure
trigonal
Thermochemistry
105.1 J/mol K
116.9 J/mol K
-724 kJ/mol
Hazards
GHS labelling:
GHS02: FlammableGHS07: Exclamation mark
Danger
NFPA 704 (fire diamond)
NFPA 704 four-colored diamond
4
0
2
Safety data sheet (SDS)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Infobox references

Crystal structure

More than six crystalline forms of aluminium sulfide are known and only some are listed below. Most of them have rather similar, wurtzite-like structures, and differ by the arrangement of lattice vacancies, which form ordered or disordered sublattices.[2][3]

FormSymmetrySpace
group
a (A)c (A)ρ (g/cm3)
αHexagonalP616.42317.832.32
βHexagonalP63mc3.5795.8292.495
γTrigonal6.4717.262.36
δTetragonalI41/amd7.02629.8192.71

The β and γ phases are obtained by annealing the most stable α-Al2S3 phase at several hundred degrees Celsius.[4] Compressing aluminium sulfide to 2–65 bar results in the δ phase where vacancies are arranged in a superlattice of tetragonal symmetry.[5]

Unlike Al2O3, in which the Al(III) centers occupy octahedral holes, the more expanded framework of Al2S3 stabilizes the Al(III) centers into one third of the tetrahedral holes of a hexagonally close-packed arrangement of the sulfide anions. At higher temperature, the Al(III) centers become randomized to give a "defect wurtzite" structure. And at still higher temperatures stabilize the γ-Al2S3 forms, with a structure akin to γ-Al2O3.

Molecular derivatives of Al2S3 are not known. Mixed Al-S-Cl compounds are however known. Al2Se3 and Al2Te3 are also known.

Preparation

Aluminium sulfide is readily prepared by ignition of the elements[6]

2 Al + 3 S → Al2S3

This reaction is extremely exothermic and it is not necessary or desirable to heat the whole mass of the sulfur-aluminium mixture; (except possibly for very small amounts of reactants). The product will be created in a fused form; it reaches a temperature greater than 1100 °C and may melt its way through steel. The cooled product is very hard.

References

  1. Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN 0-12-352651-5.
  2. Hans Landolt; D. Bimberg, Richard Börnstein; Richard Börnstein (1982). Halbleiter. Springer. pp. 12–. ISBN 978-3-540-13507-4. Retrieved 23 September 2011.
  3. Flahaut J. Ann. Chim. (Paris) 7 (1952) 632–696
  4. Krebs, Bernt; Schiemann, Anke; läGe, Mechtild (1993). "Synthese und Kristallstruktur einer Neuen hexagonalen Modifikation von Al2S3 mit fünffach koordiniertem Aluminum". Zeitschrift für anorganische und allgemeine Chemie. 619 (6): 983. doi:10.1002/zaac.19936190604.
  5. Donohue, P (1970). "High-pressure spinel type Al2S3 and MnAl2S4". Journal of Solid State Chemistry. 2 (1): 6–8. Bibcode:1970JSSCh...2....6D. doi:10.1016/0022-4596(70)90024-1.
  6. McPherson, William (1913). Laboratory manual. Boston: Ginn and Company. p. 445.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.