List of sequence alignment software

This list of sequence alignment software is a compilation of software tools and web portals used in pairwise sequence alignment and multiple sequence alignment. See structural alignment software for structural alignment of proteins.

Database search only

Name Description Sequence type* Authors Year
BLAST Local search with fast k-tuple heuristic (Basic Local Alignment Search Tool)BothAltschul SF, Gish W, Miller W, Myers EW, Lipman DJ[1]1990
HPC-BLAST NCBI compliant multinode and multicore BLAST wrapper. Distributed with the latest version of BLAST, this wrapper facilitates parallelization of the algorithm on modern hybrid architectures with many nodes and many cores within each node.[2]ProteinBurdyshaw CE, Sawyer S, Horton MD, Brook RG, Rekapalli B2017
CS-BLAST Sequence-context specific BLAST, more sensitive than BLAST, FASTA, and SSEARCH. Position-specific iterative version CSI-BLAST more sensitive than PSI-BLASTProteinAngermueller C, Biegert A, Soeding J[3] 2013
CUDASW++ GPU accelerated Smith Waterman algorithm for multiple shared-host GPUsProteinLiu Y, Maskell DL and Schmidt B2009/2010
DIAMOND BLASTX and BLASTP aligner based on double indexingProteinBuchfink B, Xie C, Huson DH, Reuter K, Drost HG [4][5] 2015/2021
FASTA Local search with fast k-tuple heuristic, slower but more sensitive than BLASTBoth
GGSEARCH, GLSEARCH Global:Global (GG), Global:Local (GL) alignment with statisticsProtein
Genome Magician Software for ultra fast local DNA sequence motif search and pairwise alignment for NGS data (FASTA, FASTQ).DNAHepperle D (www.sequentix.de)2020
Genoogle Genoogle uses indexing and parallel processing techniques for searching DNA and Proteins sequences. It is developed in Java and open source.BothAlbrecht F2015
HMMER Local and global search with profile Hidden Markov models, more sensitive than PSI-BLASTBothDurbin R, Eddy SR, Krogh A, Mitchison G[6]1998
HH-suite Pairwise comparison of profile Hidden Markov models; very sensitiveProteinSöding J[7][8]2005/2012
IDF Inverse Document FrequencyBoth
Infernal Profile SCFG searchRNAEddy S
KLAST High-performance general purpose sequence similarity search toolBoth2009/2014
LAMBDA High performance local aligner compatible to BLAST, but much faster; supports SAM/BAMProteinHannes Hauswedell, Jochen Singer, Knut Reinert[9]2014
MMseqs2 Software suite to search and cluster huge sequence sets. Similar sensitivity to BLAST and PSI-BLAST but orders of magnitude fasterProteinSteinegger M, Mirdita M, Galiez C, Söding J[10]2017
USEARCH Ultra-fast sequence analysis toolBothEdgar, R. C. (2010). "Search and clustering orders of magnitude faster than BLAST". Bioinformatics. 26 (19): 2460–2461. doi:10.1093/bioinformatics/btq461. PMID 20709691. publication2010
OSWALD OpenCL Smith-Waterman on Altera's FPGA for Large Protein Databases Protein Rucci E, García C, Botella G, De Giusti A, Naiouf M, Prieto-Matías M[11] 2016
parasail Fast Smith-Waterman search using SIMD parallelizationBothDaily J2015
PSI-BLAST Position-specific iterative BLAST, local search with position-specific scoring matrices, much more sensitive than BLASTProteinAltschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ[12]1997
PSI-Search Combining the Smith-Waterman search algorithm with the PSI-BLAST profile construction strategy to find distantly related protein sequences, and preventing homologous over-extension errors.ProteinLi W, McWilliam H, Goujon M, Cowley A, Lopez R, Pearson WR[13]2012
R&R Retrieve and Relate (R&R) is a high performance yet sensitive multi-database search engine, capable of searching in parallel through DNA,RNA and Protein sequences. Both 2019
ScalaBLAST Highly parallel Scalable BLASTBothOehmen et al.[14]2011
Sequilab Linking and profiling sequence alignment data from NCBI-BLAST results with major sequence analysis servers/servicesNucleotide, peptide2010
SAM Local and global search with profile Hidden Markov models, more sensitive than PSI-BLASTBothKarplus K, Krogh A[15]1999
SSEARCH Smith-Waterman search, slower but more sensitive than FASTABoth
SWAPHI First parallelized algorithm employing the emerging Intel Xeon Phis to accelerate Smith-Waterman protein database searchProteinLiu Y and Schmidt B2014
SWAPHI-LS First parallel Smith-Waterman algorithm exploiting Intel Xeon Phi clusters to accelerate the alignment of long DNA sequencesDNALiu Y, Tran TT, Lauenroth F, Schmidt B2014
SWIMM Smith-Waterman implementation for Intel Multicore and Manycore architecturesProteinRucci E, García C, Botella G, De Giusti A, Naiouf M and Prieto-Matías M[16]2015
SWIMM2.0 Enhanced Smith-Waterman on Intel's Multicore and Manycore architectures based on AVX-512 vector extensionsProteinRucci E, García C, Botella G, De Giusti A, Naiouf M and Prieto-Matías M[17]2018
SWIPE Fast Smith-Waterman search using SIMD parallelizationBothRognes T2011

*Sequence type: protein or nucleotide

Pairwise alignment

Name DescriptionSequence type*Alignment type**AuthorYear
ACANA Fast heuristic anchor based pairwise alignmentBothBothHuang, Umbach, Li2005
AlignMe Alignments for membrane protein sequencesProteinBothM. Stamm, K. Khafizov, R. Staritzbichler, L.R. Forrest2013
ALLALIGN For DNA, RNA and protein molecules up to 32MB, aligns all sequences of size K or greater. Similar alignments are grouped together for analysis. Automatic repetitive sequence filter. Both Local E. Wachtel 2017
Bioconductor Biostrings::pairwiseAlignment Dynamic programmingBothBoth + Ends-freeP. Aboyoun2008
BioPerl dpAlign Dynamic programmingBothBoth + Ends-freeY. M. Chan2003
BLASTZ, LASTZ Seeded pattern-matchingNucleotideLocalSchwartz et al.[18][19]2004,2009
CUDAlign DNA sequence alignment of unrestricted size in single or multiple GPUs NucleotideLocal, SemiGlobal, GlobalE. Sandes[20][21][22]2011-2015
DNADot Web-based dot-plot toolNucleotideGlobalR. Bowen1998
DOTLET Java-based dot-plot toolBothGlobalM. Pagni and T. Junier1998
FEAST Posterior based local extension with descriptive evolution modelNucleotideLocalA. K. Hudek and D. G. Brown2010
Genome Compiler Genome Compiler Align chromatogram files (.ab1, .scf) against a template sequence, locate errors, and correct them instantly. Nucleotide Local Genome Compiler Corporation 2014
G-PAS GPU-based dynamic programming with backtrackingBothLocal, SemiGlobal, GlobalW. Frohmberg, M. Kierzynka et al.2011
GapMis Does pairwise sequence alignment with one gapBothSemiGlobalK. Frousios, T. Flouri, C. S. Iliopoulos, K. Park, S. P. Pissis, G. Tischler2012
Genome Magician Software for ultra fast local DNA sequence motif search and pairwise alignment for NGS data (FASTA, FASTQ).DNALocal, SemiGlobal, GlobalHepperle D (www.sequentix.de)2020
GGSEARCH, GLSEARCH Global:Global (GG), Global:Local (GL) alignment with statisticsProteinGlobal in queryW. Pearson2007
JAligner Java open-source implementation of Smith-WatermanBothLocalA. Moustafa2005
K*Sync Protein sequence to structure alignment that includes secondary structure, structural conservation, structure-derived sequence profiles, and consensus alignment scoresProteinBothD. Chivian & D. Baker[23]2003
LALIGN Multiple, non-overlapping, local similarity (same algorithm as SIM)BothLocal non-overlappingW. Pearson1991 (algorithm)
NW-align Standard Needleman-Wunsch dynamic programming algorithmProteinGlobalY Zhang2012
mAlign modelling alignment; models the information content of the sequencesNucleotideBothD. Powell, L. Allison and T. I. Dix2004
matcher Waterman-Eggert local alignment (based on LALIGN)BothLocalI. Longden (modified from W. Pearson)1999
MCALIGN2 explicit models of indel evolutionDNAGlobalJ. Wang et al.2006
MegAlign Pro (Lasergene Molecular Biology) Software to align DNA, RNA, protein, or DNA + protein sequences via pairwise and multiple sequence alignment algorithms including MUSCLE, Mauve, MAFFT, Clustal Omega, Jotun Hein, Wilbur-Lipman, Martinez Needleman-Wunsch, Lipman-Pearson and Dotplot analysis.BothBothDNASTAR1993-2016
MUMmer suffix tree basedNucleotideGlobalS. Kurtz et al.2004
needle Needleman-Wunsch dynamic programmingBothSemiGlobalA. Bleasby1999
Ngila logarithmic and affine gap costs and explicit models of indel evolutionBothGlobalR. Cartwright2007
NW Needleman-Wunsch dynamic programmingBothGlobalA.C.R. Martin1990-2015
parasail C/C++/Python/Java SIMD dynamic programming library for SSE, AVX2BothGlobal, Ends-free, LocalJ. Daily2015
Path Smith-Waterman on protein back-translation graph (detects frameshifts at protein level)ProteinLocalM. Gîrdea et al.[24]2009
PatternHunter Seeded pattern-matchingNucleotideLocalB. Ma et al.[25][26]2002–2004
ProbA (also propA) Stochastic partition function sampling via dynamic programmingBothGlobalU. Mückstein2002
PyMOL "align" command aligns sequence & applies it to structureProteinGlobal (by selection)W. L. DeLano2007
REPuter suffix tree basedNucleotideLocalS. Kurtz et al.2001
SABERTOOTH Alignment using predicted Connectivity ProfilesProteinGlobalF. Teichert, J. Minning, U. Bastolla, and M. Porto2009
Satsuma Parallel whole-genome synteny alignmentsDNALocalM.G. Grabherr et al.2010
SEQALN Various dynamic programmingBothLocal or globalM.S. Waterman and P. Hardy1996
SIM, GAP, NAP, LAP Local similarity with varying gap treatmentsBothLocal or globalX. Huang and W. Miller1990-6
SIM Local similarityBothLocalX. Huang and W. Miller1991
SPA: Super pairwise alignment Fast pairwise global alignmentNucleotideGlobalShen, Yang, Yao, Hwang2002
SSEARCH Local (Smith-Waterman) alignment with statisticsProteinLocalW. Pearson1981 (Algorithm)
Sequences Studio Java applet demonstrating various algorithms from[27]Generic sequenceLocal and globalA.Meskauskas1997 (reference book)
SWIFOLD Smith-Waterman Acceleration on Intel's FPGA with OpenCL for Long DNA Sequences NucleotideLocalE. Rucci[28][29]2017-2018
SWIFT suit Fast Local Alignment SearchingDNALocalK. Rasmussen,[30] W. Gerlach2005,2008
stretcher Memory-optimized Needleman-Wunsch dynamic programmingBothGlobalI. Longden (modified from G. Myers and W. Miller)1999
tranalign Aligns nucleic acid sequences given a protein alignmentNucleotideNAG. Williams (modified from B. Pearson)2002
UGENE Opensource Smith-Waterman for SSE/CUDA, Suffix array based repeats finder & dotplotBothBothUniPro2010
water Smith-Waterman dynamic programmingBothLocalA. Bleasby1999
wordmatch k-tuple pairwise matchBothNAI. Longden1998
YASS Seeded pattern-matchingNucleotideLocalL. Noe and G. Kucherov[31]2004

*Sequence type: protein or nucleotide **Alignment type: local or global

Multiple sequence alignment

Name DescriptionSequence type*Alignment type**AuthorYearLicense
ABA A-Bruijn alignmentProteinGlobalB.Raphael et al.2004Proprietary, freeware for education, research, nonprofit
ALE manual alignment ; some software assistanceNucleotidesLocalJ. Blandy and K. Fogel1994 (latest version 2007)Free, GPL2
ALLALIGN For DNA, RNA and protein molecules up to 32MB, aligns all sequences of size K or greater, MSA or within a single molecule. Similar alignments are grouped together for analysis. Automatic repetitive sequence filter. Both Local E. Wachtel 2017 Free
AMAP Sequence annealingBothGlobalA. Schwartz and L. Pachter2006
anon. fast, optimal alignment of three sequences using linear gap costsNucleotidesGlobalD. Powell, L. Allison and T. I. Dix2000
BAli-Phy Tree+multi-alignment; probabilistic-Bayesian; joint estimationBoth + CodonsGlobalBD Redelings and MA Suchard2005 (latest version 2018)Free, GPL
Base-By-Base Java-based multiple sequence alignment editor with integrated analysis toolsBothLocal or globalR. Brodie et al.2004Proprietary, freeware, must register
CHAOS, DIALIGN Iterative alignmentBothLocal (preferred)M. Brudno and B. Morgenstern2003
ClustalW Progressive alignmentBothLocal or globalThompson et al.1994Free, LGPL
CodonCode Aligner Multi-alignment; ClustalW & Phrap supportNucleotidesLocal or globalP. Richterich et al.2003 (latest version 2009)
Compass COmparison of Multiple Protein sequence Alignments with assessment of Statistical SignificanceProteinGlobalR.I. Sadreyev, et al.2009
DECIPHER Progressive-iterative alignmentBothGlobalErik S. Wright2014Free, GPL
DIALIGN-TX and DIALIGN-T Segment-based methodBothLocal (preferred) or GlobalA.R.Subramanian2005 (latest version 2008)
DNA Alignment Segment-based method for intraspecific alignmentsBothLocal (preferred) or GlobalA.Roehl2005 (latest version 2008)
DNA Baser Sequence Assembler Multi-alignment; Full automatic sequence alignment; Automatic ambiguity correction; Internal base caller; Command line seq alignmentNucleotidesLocal or globalHeracle BioSoft SRL2006 (latest version 2018)Commercial (some modules are freeware)
DNADynamo linked DNA to Protein multiple alignment with MUSCLE, Clustal and Smith-WatermanBothLocal or globalDNADynamo2004 (newest version 2017)
EDNA Energy Based Multiple Sequence Alignment for DNA Binding SitesNucleotidesLocal or globalSalama, RA. et al.2013
FAMSA Progressive alignment for extremely large protein families (hundreds of thousands of members) Protein Global Deorowicz et al. 2016 Free, GPL 3
FSA Sequence annealingBothGlobalR. K. Bradley et al.2008
Geneious Progressive-Iterative alignment; ClustalW pluginBothLocal or globalA.J. Drummond et al.2005 (latest version 2017)
GUIDANCE Quality control and filtering of multiple sequence alignmentsBothLocal or globalO. Penn et al.2010 (latest version 2015)
Kalign Progressive alignmentBothGlobalT. Lassmann2005
MACSE Progressive-iterative alignment. Multiple alignment of coding sequences accounting for frameshifts and stop codons. Nucleotides Global V. Ranwez et al. 2011 (latest version, v2.07 2023)
MAFFT Progressive-iterative alignmentBothLocal or globalK. Katoh et al.2005Free, BSD
MARNA Multi-alignment of RNAsRNALocalS. Siebert et al.2005
MAVID Progressive alignmentBothGlobalN. Bray and L. Pachter2004
MegAlign Pro (Lasergene Molecular Biology) Software to align DNA, RNA, protein, or DNA + protein sequences via pairwise and multiple sequence alignment algorithms including MUSCLE, Mauve, MAFFT, Clustal Omega, Jotun Hein, Wilbur-Lipman, Martinez Needleman-Wunsch, Lipman-Pearson and Dotplot analysis.BothLocal or globalDNASTAR1993-2016
MSA Dynamic programmingBothLocal or globalD.J. Lipman et al.1989 (modified 1995)
MSAProbs Dynamic programmingProteinGlobalY. Liu, B. Schmidt, D. Maskell2010
MULTALIN Dynamic programming-clusteringBothLocal or globalF. Corpet1988
Multi-LAGAN Progressive dynamic programming alignmentBothGlobalM. Brudno et al.2003
MUSCLE Progressive-iterative alignmentBothLocal or globalR. Edgar2004
Opal Progressive-iterative alignmentBothLocal or globalT. Wheeler and J. Kececioglu2007 (latest stable 2013, latest beta 2016)
Pecan Probabilistic-consistencyDNAGlobalB. Paten et al.2008
Phylo A human computing framework for comparative genomics to solve multiple alignmentNucleotidesLocal or globalMcGill Bioinformatics2010
PMFastR Progressive structure aware alignment RNA Global D. DeBlasio, J Braund, S Zhang 2009
Praline Progressive-iterative-consistency-homology-extended alignment with preprofiling and secondary structure predictionProteinGlobalJ. Heringa1999 (latest version 2009)
PicXAA Nonprogressive, maximum expected accuracy alignmentBothGlobalS.M.E. Sahraeian and B.J. Yoon2010
POA Partial order/hidden Markov modelProteinLocal or globalC. Lee2002
Probalign Probabilistic/consistency with partition function probabilitiesProteinGlobalRoshan and Livesay2006Free, public domain
ProbCons Probabilistic/consistencyProteinLocal or globalC. Do et al.2005Free, public domain
PROMALS3D Progressive alignment/hidden Markov model/Secondary structure/3D structureProteinGlobalJ. Pei et al.2008
PRRN/PRRP Iterative alignment (especially refinement)ProteinLocal or globalY. Totoki (based on O. Gotoh)1991 and later
PSAlign Alignment preserving non-heuristicBothLocal or globalS.H. Sze, Y. Lu, Q. Yang.2006
RevTrans Combines DNA and Protein alignment, by back translating the protein alignment to DNA.DNA/Protein (special)Local or globalWernersson and Pedersen2003 (newest version 2005)
SAGA Sequence alignment by genetic algorithmProteinLocal or globalC. Notredame et al.1996 (new version 1998)
SAM Hidden Markov modelProteinLocal or globalA. Krogh et al.1994 (most recent version 2002)
Se-Al Manual alignmentBothLocalA. Rambaut2002
StatAlign Bayesian co-estimation of alignment and phylogeny (MCMC)BothGlobalA. Novak et al.2008
Stemloc Multiple alignment and secondary structure predictionRNALocal or globalI. Holmes2005Free, GPL 3 (parte de DART)
T-Coffee More sensitive progressive alignmentBothLocal or globalC. Notredame et al.2000 (newest version 2008)Free, GPL 2
UGENE Supports multiple alignment with MUSCLE, KAlign, Clustal and MAFFT pluginsBothLocal or globalUGENE team2010 (newest version 2020)Free, GPL 2
VectorFriends VectorFriends Aligner, MUSCLE plugin, and ClustalW pluginBothLocal or globalBioFriends team2013Proprietary, freeware for academic use
GLProbs Adaptive pair-Hidden Markov Model based approachProteinGlobalY. Ye et al.2013

*Sequence type: protein or nucleotide. **Alignment type: local or global

Genomics analysis

Name Description Sequence type*
EAGLE [32] An ultra-fast tool to find relative absent words in genomic data Nucleotide
ACT (Artemis Comparison Tool) Synteny and comparative genomics Nucleotide
AVID Pairwise global alignment with whole genomesNucleotide
BLAT Alignment of cDNA sequences to a genome.Nucleotide
DECIPHER Alignment of rearranged genomes using 6 frame translationNucleotide
FLAK Fuzzy whole genome alignment and analysisNucleotide
GMAP Alignment of cDNA sequences to a genome. Identifies splice site junctions with high accuracy.Nucleotide
Splign Alignment of cDNA sequences to a genome. Identifies splice site junctions with high accuracy. Able to recognize and separate gene duplications.Nucleotide
Mauve Multiple alignment of rearranged genomesNucleotide
MGA Multiple Genome AlignerNucleotide
Mulan Local multiple alignments of genome-length sequencesNucleotide
Multiz Multiple alignment of genomesNucleotide
PLAST-ncRNA Search for ncRNAs in genomes by partition function local alignmentNucleotide
Sequerome Profiling sequence alignment data with major servers/servicesNucleotide, peptide
Sequilab Profiling sequence alignment data from NCBI-BLAST results with major servers-servicesNucleotide, peptide
Shuffle-LAGAN Pairwise global alignment of completed genome regionsNucleotide
SIBsim4, Sim4 A program designed to align an expressed DNA sequence with a genomic sequence, allowing for intronsNucleotide
SLAM Gene finding, alignment, annotation (human-mouse homology identification)Nucleotide
SRPRISM An efficient aligner for assemblies with explicit guarantees, aligning reads without splicesNucleotide

*Sequence type: protein or nucleotide


Motif finding

Name DescriptionSequence type*
PMS Motif search and discoveryBoth
FMM Motif search and discovery (can get also positive & negative sequences as input for enriched motif search)Nucleotide
BLOCKS Ungapped motif identification from BLOCKS databaseBoth
eMOTIF Extraction and identification of shorter motifsBoth
Gibbs motif sampler Stochastic motif extraction by statistical likelihoodBoth
HMMTOP Prediction of transmembrane helices and topology of proteinsProtein
I-sites Local structure motif libraryProtein
JCoils Prediction of Coiled coil and Leucine ZipperProtein
MEME/MAST Motif discovery and searchBoth
CUDA-MEME GPU accelerated MEME (v4.4.0) algorithm for GPU clustersBoth
MERCI Discriminative motif discovery and searchBoth
PHI-Blast Motif search and alignment toolBoth
Phyloscan Motif search toolNucleotide
PRATT Pattern generation for use with ScanPrositeProtein
ScanProsite Motif database search toolProtein
TEIRESIAS Motif extraction and database searchBoth
BASALT Multiple motif and regular expression searchBoth

*Sequence type: protein or nucleotide


Benchmarking

Name Authors
PFAM 30.0 (2016)
SMART (2015) Letunic, Copley, Schmidt, Ciccarelli, Doerks, Schultz, Ponting, Bork
BAliBASE 3 (2015) Thompson, Plewniak, Poch
Oxbench (2011) Raghava, Searle, Audley, Barber, Barton
Benchmark collection (2009) Edgar
HOMSTRAD (2005) Mizuguchi
PREFAB 4.0 (2005) Edgar
SABmark (2004) Van Walle, Lasters, Wyns

Alignment viewers, editors

Please see List of alignment visualization software.

Short-read sequence alignment

Name Description paired-end option Use FASTQ quality Gapped Multi-threaded License Reference Year
Arioc Computes Smith-Waterman gapped alignments and mapping qualities on one or more GPUs. Supports BS-seq alignments. Processes 100,000 to 500,000 reads per second (varies with data, hardware, and configured sensitivity). Yes No Yes Yes Free, BSD [33] 2015
BarraCUDA A GPGPU accelerated Burrows–Wheeler transform (FM-index) short read alignment program based on BWA, supports alignment of indels with gap openings and extensions. Yes No Yes Yes, POSIX Threads and CUDA Free, GPL
BBMap Uses a short kmers to rapidly index genome; no size or scaffold count limit. Higher sensitivity and specificity than Burrows–Wheeler aligners, with similar or greater speed. Performs affine-transform-optimized global alignment, which is slower but more accurate than Smith-Waterman. Handles Illumina, 454, PacBio, Sanger, and Ion Torrent data. Splice-aware; capable of processing long indels and RNA-seq. Pure Java; runs on any platform. Used by the Joint Genome Institute. Yes Yes Yes Yes Free, BSD 2010
BFAST Explicit time and accuracy tradeoff with a prior accuracy estimation, supported by indexing the reference sequences. Optimally compresses indexes. Can handle billions of short reads. Can handle insertions, deletions, SNPs, and color errors (can map ABI SOLiD color space reads). Performs a full Smith Waterman alignment. Yes, POSIX Threads Free, GPL [34] 2009
BigBWA Runs the Burrows–Wheeler Aligner-BWA on a Hadoop cluster. It supports the algorithms BWA-MEM, BWA-ALN, and BWA-SW, working with paired and single reads. It implies an important reduction in the computational time when running in a Hadoop cluster, adding scalability and fault-tolerance. Yes Low quality bases trimming Yes Yes Free, GPL 3 [35] 2015
BLASTN BLAST's nucleotide alignment program, slow and not accurate for short reads, and uses a sequence database (EST, Sanger sequence) rather than a reference genome.
BLAT Made by Jim Kent. Can handle one mismatch in initial alignment step. Yes, client-server Proprietary, freeware for academic and noncommercial use [36] 2002
Bowtie Uses a Burrows–Wheeler transform to create a permanent, reusable index of the genome; 1.3 GB memory footprint for human genome. Aligns more than 25 million Illumina reads in 1 CPU hour. Supports Maq-like and SOAP-like alignment policies Yes Yes No Yes, POSIX Threads Free, Artistic [37] 2009
BWA Uses a Burrows–Wheeler transform to create an index of the genome. It's a bit slower than Bowtie but allows indels in alignment. Yes Low quality bases trimming Yes Yes Free, GPL [38] 2009
BWA-PSSM A probabilistic short read aligner based on the use of position specific scoring matrices (PSSM). The aligner is adaptable in the sense that it can take into account the quality scores of the reads and models of data specific biases, such as those observed in Ancient DNA, PAR-CLIP data or genomes with biased nucleotide compositions.[39] Yes Yes Yes Yes Free, GPL [39] 2014
CASHX Quantify and manage large quantities of short-read sequence data. CASHX pipeline contains a set of tools that can be used together, or separately as modules. This algorithm is very accurate for perfect hits to a reference genome. No Proprietary, freeware for academic and noncommercial use
Cloudburst Short-read mapping using Hadoop MapReduce Yes, Hadoop MapReduce Free, Artistic
CUDA-EC Short-read alignment error correction using GPUs. Yes, GPU enabled
CUSHAW A CUDA compatible short read aligner to large genomes based on Burrows–Wheeler transform Yes Yes No Yes (GPU enabled) Free, GPL [40] 2012
CUSHAW2 Gapped short-read and long-read alignment based on maximal exact match seeds. This aligner supports both base-space (e.g. from Illumina, 454, Ion Torrent and PacBio sequencers) and ABI SOLiD color-space read alignments. Yes No Yes Yes Free, GPL 2014
CUSHAW2-GPU GPU-accelerated CUSHAW2 short-read aligner. Yes No Yes Yes Free, GPL
CUSHAW3 Sensitive and accurate base-space and color-space short-read alignment with hybrid seeding Yes No Yes Yes Free, GPL [41] 2012
drFAST Read mapping alignment software that implements cache obliviousness to minimize main/cache memory transfers like mrFAST and mrsFAST, however designed for the SOLiD sequencing platform (color space reads). It also returns all possible map locations for improved structural variation discovery. Yes Yes, for structural variation Yes No Free, BSD
ELAND Implemented by Illumina. Includes ungapped alignment with a finite read length.
ERNE Extended Randomized Numerical alignEr for accurate alignment of NGS reads. It can map bisulfite-treated reads. Yes Low quality bases trimming Yes Multithreading and MPI-enabled Free, GPL 3
GASSST Finds global alignments of short DNA sequences against large DNA banks Multithreading CeCILL version 2 License. [42] 2011
GEM High-quality alignment engine (exhaustive mapping with substitutions and indels). More accurate and several times faster than BWA or Bowtie 1/2. Many standalone biological applications (mapper, split mapper, mappability, and other) provided. Yes Yes Yes Yes Free, GPL3 [43] 2012
Genalice MAP Ultra fast and comprehensive NGS read aligner with high precision and small storage footprint. Yes Low quality bases trimming Yes Yes Proprietary, commercial
Geneious Assembler Fast, accurate overlap assembler with the ability to handle any combination of sequencing technology, read length, any pairing orientations, with any spacer size for the pairing, with or without a reference genome. Yes Proprietary, commercial
GensearchNGS Complete framework with user-friendly GUI to analyse NGS data. It integrates a proprietary high quality alignment algorithm and plug-in ability to integrate various public aligner into a framework allowing to import short reads, align them, detect variants, and generate reports. It is made for resequencing projects, namely in a diagnostic setting. Yes No Yes Yes Proprietary, commercial
GMAP and GSNAP Robust, fast short-read alignment. GMAP: longer reads, with multiple indels and splices (see entry above under Genomics analysis); GSNAP: shorter reads, with one indel or up to two splices per read. Useful for digital gene expression, SNP and indel genotyping. Developed by Thomas Wu at Genentech. Used by the National Center for Genome Resources (NCGR) in Alpheus. Yes Yes Yes Yes Proprietary, freeware for academic and noncommercial use
GNUMAP Accurately performs gapped alignment of sequence data obtained from next-generation sequencing machines (specifically of Solexa-Illumina) back to a genome of any size. Includes adaptor trimming, SNP calling and Bisulfite sequence analysis. Yes, also supports Illumina *_int.txt and *_prb.txt files with all 4 quality scores for each base Multithreading and MPI-enabled [44] 2009
HIVE-hexagon Uses a hash table and bloom matrix to create and filter potential positions on the genome. For higher efficiency uses cross-similarity between short reads and avoids realigning non unique redundant sequences. It is faster than Bowtie and BWA and allows indels and divergent sensitive alignments on viruses, bacteria, and more conservative eukaryotic alignments. Yes Yes Yes Yes Proprietary, freeware for academic and noncommercial users registered to HIVE deployment instance [45] 2014
IMOS Improved Meta-aligner and Minimap2 On Spark. A long read distributed aligner on Apache Spark platform with linear scalability w.r.t. single node execution. Yes Yes Yes Free
Isaac Fully uses all the computing power available on one server node; thus, it scales well over a broad range of hardware architectures, and alignment performance improves with hardware abilities Yes Yes Yes Yes Free, GPL
LAST Uses adaptative seeds and copes more efficiently with repeat-rich sequences (e.g. genomes). For example: it can align reads to genomes without repeat-masking, without becoming overwhelmed by repetitive hits. Yes Yes Yes Yes Free, GPL [46] 2011
MAQ Ungapped alignment that takes into account quality scores for each base. Free, GPL
mrFAST, mrsFAST Gapped (mrFAST) and ungapped (mrsFAST) alignment software that implements cache obliviousness to minimize main/cache memory transfers. They are designed for the Illumina sequencing platform and they can return all possible map locations for improved structural variation discovery. Yes Yes, for structural variation Yes No Free, BSD
MOM MOM or maximum oligonucleotide mapping is a query matching tool that captures a maximal length match within the short read. Yes
MOSAIK Fast gapped aligner and reference-guided assembler. Aligns reads using a banded Smith-Waterman algorithm seeded by results from a k-mer hashing scheme. Supports reads ranging in size from very short to very long. Yes
MPscan Fast aligner based on a filtration strategy (no indexing, use q-grams and Backward Nondeterministic DAWG Matching) [47] 2009
Novoalign & NovoalignCS Gapped alignment of single end and paired end Illumina GA I & II, ABI Colour space & ION Torrent reads. High sensitivity and specificity, using base qualities at all steps in the alignment. Includes adapter trimming, base quality calibration, Bi-Seq alignment, and options for reporting multiple alignments per read. Use of ambiguous IUPAC codes in reference for common SNPs can improve SNP recall and remove allelic bias. Yes Yes Yes Multi-threading and MPI versions available with paid license Proprietary, freeware single threaded version for academic and noncommercial use
NextGENe Developed for use by biologists performing analysis of next generation sequencing data from Roche Genome Sequencer FLX, Illumina GA/HiSeq, Life Technologies Applied BioSystems’ SOLiD System, PacBio and Ion Torrent platforms. Yes Yes Yes Yes Proprietary, commercial
NextGenMap Flexible and fast read mapping program (twice as fast as BWA), achieves a mapping sensitivity comparable to Stampy. Internally uses a memory efficient index structure (hash table) to store positions of all 13-mers present in the reference genome. Mapping regions where pairwise alignments are required are dynamically determined for each read. Uses fast SIMD instructions (SSE) to accelerate alignment calculations on CPU. If available, alignments are computed on GPU (using OpenCL/CUDA) further reducing runtime 20-50%. Yes No Yes Yes, POSIX Threads, OpenCL/CUDA, SSE Free [48] 2013
Omixon Variant Toolkit Includes highly sensitive and highly accurate tools for detecting SNPs and indels. It offers a solution to map NGS short reads with a moderate distance (up to 30% sequence divergence) from reference genomes. It poses no restrictions on the size of the reference, which, combined with its high sensitivity, makes the Variant Toolkit well-suited for targeted sequencing projects and diagnostics. Yes Yes Yes Yes Proprietary, commercial
PALMapper Efficiently computes both spliced and unspliced alignments at high accuracy. Relying on a machine learning strategy combined with a fast mapping based on a banded Smith-Waterman-like algorithm, it aligns around 7 million reads per hour on one CPU. It refines the originally proposed QPALMA approach. Yes Free, GPL
Partek Flow For use by biologists and bioinformaticians. It supports ungapped, gapped and splice-junction alignment from single and paired-end reads from Illumina, Life technologies Solid TM, Roche 454 and Ion Torrent raw data (with or without quality information). It integrates powerful quality control on FASTQ/Qual level and on aligned data. Additional functionality include trimming and filtering of raw reads, SNP and InDel detection, mRNA and microRNA quantification and fusion gene detection. Yes Yes Yes Multiprocessor-core, client-server installation possible Proprietary, commercial, free trial version
PASS Indexes the genome, then extends seeds using pre-computed alignments of words. Works with base space, color space (SOLID), and can align genomic and spliced RNA-seq reads. Yes Yes Yes Yes Proprietary, freeware for academic and noncommercial use
PerM Indexes the genome with periodic seeds to quickly find alignments with full sensitivity up to four mismatches. It can map Illumina and SOLiD reads. Unlike most mapping programs, speed increases for longer read lengths. Yes Free, GPL [49]
PRIMEX Indexes the genome with a k-mer lookup table with full sensitivity up to an adjustable number of mismatches. It is best for mapping 15-60 bp sequences to a genome. No No Yes No, multiple processes per search 2003
QPalma Can use quality scores, intron lengths, and computation splice site predictions to perform and performs an unbiased alignment. Can be trained to the specifics of a RNA-seq experiment and genome. Useful for splice site/intron discovery and for gene model building. (See PALMapper for a faster version). Yes, client-server Free, GPL 2
RazerS No read length limit. Hamming or edit distance mapping with configurable error rates. Configurable and predictable sensitivity (runtime/sensitivity tradeoff). Supports paired-end read mapping. Free, LGPL
REAL, cREAL REAL is an efficient, accurate, and sensitive tool for aligning short reads obtained from next-generation sequencing. The programme can handle an enormous amount of single-end reads generated by the next-generation Illumina/Solexa Genome Analyzer. cREAL is a simple extension of REAL for aligning short reads obtained from next-generation sequencing to a genome with circular structure. Yes Yes Free, GPL
RMAP Can map reads with or without error probability information (quality scores) and supports paired-end reads or bisulfite-treated read mapping. There are no limitations on read length or number of mismatches. Yes Yes Yes Free, GPL 3
rNA A randomized Numerical Aligner for Accurate alignment of NGS reads Yes Low quality bases trimming Yes Multithreading and MPI-enabled Free, GPL 3
RTG Investigator Extremely fast, tolerant to high indel and substitution counts. Includes full read alignment. Product includes comprehensive pipelines for variant detection and metagenomic analysis with any combination of Illumina, Complete Genomics and Roche 454 data. Yes Yes, for variant calling Yes Yes Proprietary, freeware for individual investigator use
Segemehl Can handle insertions, deletions, mismatches; uses enhanced suffix arrays Yes No Yes Yes Proprietary, freeware for noncommercial use [50] 2009
SeqMap Up to 5 mixed substitutions and insertions-deletions; various tuning options and input-output formats Proprietary, freeware for academic and noncommercial use
Shrec Short read error correction with a suffix tree data structure Yes, Java
SHRiMP Indexes the reference genome as of version 2. Uses masks to generate possible keys. Can map ABI SOLiD color space reads. Yes Yes Yes Yes, OpenMP Free, [[BSD licenses| style="background: #DFF; vertical-align: middle; text-align: center; " class="free table-free"|Free, BSD]] derivative

[51] [52]

2009-2011
SLIDER Slider is an application for the Illumina Sequence Analyzer output that uses the "probability" files instead of the sequence files as an input for alignment to a reference sequence or a set of reference sequences. Yes Yes No No [53][54] 2009-2010
SOAP, SOAP2, SOAP3, SOAP3-dp SOAP: robust with a small (1-3) number of gaps and mismatches. Speed improvement over BLAT, uses a 12 letter hash table. SOAP2: using bidirectional BWT to build the index of reference, and it is much faster than the first version. SOAP3: GPU-accelerated version that could find all 4-mismatch alignments in tens of seconds per one million reads. SOAP3-dp, also GPU accelerated, supports arbitrary number of mismatches and gaps according to affine gap penalty scores. Yes No Yes, SOAP3-dp Yes, POSIX Threads; SOAP3, SOAP3-dp need GPU with CUDA support Free, GPL [55][56]
SOCS For ABI SOLiD technologies. Significant increase in time to map reads with mismatches (or color errors). Uses an iterative version of the Rabin-Karp string search algorithm. Yes Free, GPL
SparkBWA Integrates the Burrows–Wheeler Aligner (BWA) on an Apache Spark framework running atop Hadoop. Version 0.2 of October 2016, supports the algorithms BWA-MEM, BWA-backtrack, and BWA-ALN. All of them work with single-reads and paired-end reads. Yes Low quality bases trimming Yes Yes Free, GPL 3 [57] 2016
SSAHA, SSAHA2 Fast for a small number of variants Proprietary, freeware for academic and noncommercial use
Stampy For Illumina reads. High specificity, and sensitive for reads with indels, structural variants, or many SNPs. Slow, but speed increased dramatically by using BWA for first alignment pass. Yes Yes Yes No Proprietary, freeware for academic and noncommercial use [58] 2010
SToRM For Illumina or ABI SOLiD reads, with SAM native output. Highly sensitive for reads with many errors, indels (full from 0 to 15, extended support otherwise). Uses spaced seeds (single hit) and a very fast SSE-SSE2-AVX2-AVX-512 banded alignment filter. For fixed-length reads only, authors recommend SHRiMP2 otherwise. No Yes Yes Yes, OpenMP Free [59] 2010
Subread, Subjunc Superfast and accurate read aligners. Subread can be used to map both gDNA-seq and RNA-seq reads. Subjunc detects exon-exon junctions and maps RNA-seq reads. They employ a novel mapping paradigm named seed-and-vote. Yes Yes Yes Yes Free, GPL 3
Taipan De-novo assembler for Illumina reads Proprietary, freeware for academic and noncommercial use
UGENE Visual interface both for Bowtie and BWA, and an embedded aligner Yes Yes Yes Yes Free, GPL
VelociMapper FPGA-accelerated reference sequence alignment mapping tool from TimeLogic. Faster than Burrows–Wheeler transform-based algorithms like BWA and Bowtie. Supports up to 7 mismatches and/or indels with no performance penalty. Produces sensitive Smith–Waterman gapped alignments. Yes Yes Yes Yes Proprietary, commercial
XpressAlign FPGA based sliding window short read aligner which exploits the embarrassingly parallel property of short read alignment. Performance scales linearly with number of transistors on a chip (i.e. performance guaranteed to double with each iteration of Moore's Law without modification to algorithm). Low power consumption is useful for datacentre equipment. Predictable runtime. Better price/performance than software sliding window aligners on current hardware, but not better than software BWT-based aligners currently. Can manage large numbers (>2) of mismatches. Will find all hit positions for all seeds. Single-FPGA experimental version, needs work to develop it into a multi-FPGA production version. Proprietary, freeware for academic and noncommercial use
ZOOM 100% sensitivity for a reads between 15 and 240 bp with practical mismatches. Very fast. Support insertions and deletions. Works with Illumina & SOLiD instruments, not 454. Yes (GUI), no (CLI) Proprietary, commercial [60]

See also

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ; Gish; Miller; Myers; Lipman (October 1990). "Basic local alignment search tool". Journal of Molecular Biology. 215 (3): 403–10. doi:10.1016/S0022-2836(05)80360-2. PMID 2231712. S2CID 14441902.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. HPC-BLAST code repository https://github.com/UTennessee-JICS/HPC-BLAST
  3. Angermüller, C.; Biegert, A.; Söding, J. (Dec 2012). "Discriminative modelling of context-specific amino acid substitution probabilities". Bioinformatics. 28 (24): 3240–7. doi:10.1093/bioinformatics/bts622. PMID 23080114.
  4. Buchfink, Xie and Huson (2015). "Fast and sensitive protein alignment using DIAMOND". Nature Methods. 12 (1): 59–60. doi:10.1038/nmeth.3176. PMID 25402007. S2CID 5346781.
  5. B Buchfink, K Reuter and HG Drost (2021). "Sensitive protein alignments at tree-of-life scale using DIAMOND". Nature Methods. 18 (4): 366–368. doi:10.1038/s41592-021-01101-x. PMC 8026399. PMID 33828273.
  6. Durbin, Richard; Eddy, Sean R.; Krogh, Anders; Mitchison, Graeme, eds. (1998). Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge, UK: Cambridge University Press. ISBN 978-0-521-62971-3.
  7. Söding J (April 2005). "Protein homology detection by HMM-HMM comparison". Bioinformatics. 21 (7): 951–60. doi:10.1093/bioinformatics/bti125. PMID 15531603.
  8. Remmert, Michael; Biegert, Andreas; Hauser, Andreas; Söding, Johannes (2011-12-25). "HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment". Nature Methods. 9 (2): 173–175. doi:10.1038/nmeth.1818. hdl:11858/00-001M-0000-0015-8D56-A. ISSN 1548-7105. PMID 22198341. S2CID 205420247.
  9. Hauswedell H, Singer J, Reinert K (2014-09-01). "Lambda: the local aligner for massive biological data". Bioinformatics. 30 (17): 349–355. doi:10.1093/bioinformatics/btu439. PMC 4147892. PMID 25161219.
  10. Steinegger, Martin; Soeding, Johannes (2017-10-16). "MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets". Nature Biotechnology. 35 (11): 1026–1028. doi:10.1038/nbt.3988. hdl:11858/00-001M-0000-002E-1967-3. PMID 29035372. S2CID 402352.
  11. Rucci, Enzo; Garcia, Carlos; Botella, Guillermo; Giusti, Armando E. De; Naiouf, Marcelo; Prieto-Matias, Manuel (2016-06-30). "OSWALD: OpenCL Smith–Waterman on Altera's FPGA for Large Protein Databases". International Journal of High Performance Computing Applications. 32 (3): 337–350. doi:10.1177/1094342016654215. ISSN 1094-3420. S2CID 212680914.
  12. Altschul SF, Madden TL, Schäffer AA, et al. (September 1997). "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs". Nucleic Acids Research. 25 (17): 3389–402. doi:10.1093/nar/25.17.3389. PMC 146917. PMID 9254694.
  13. Li W, McWilliam H, Goujon M, et al. (June 2012). "PSI-Search: iterative HOE-reduced profile SSEARCH searching". Bioinformatics. 28 (12): 1650–1651. doi:10.1093/bioinformatics/bts240. PMC 3371869. PMID 22539666.
  14. Oehmen, C.; Nieplocha, J. (August 2006). "ScalaBLAST: A scalable implementation of BLAST for high-performance data-intensive bioinformatics analysis". IEEE Transactions on Parallel & Distributed Systems. 17 (8): 740–749. doi:10.1109/TPDS.2006.112. S2CID 11122366.
  15. Hughey, R.; Karplus, K.; Krogh, A. (2003). SAM: sequence alignment and modeling software system. Technical report UCSC-CRL-99-11 (Report). University of California, Santa Cruz, CA.
  16. Rucci, Enzo; García, Carlos; Botella, Guillermo; De Giusti, Armando; Naiouf, Marcelo; Prieto-Matías, Manuel (2015-12-25). "An energy-aware performance analysis of SWIMM: Smith–Waterman implementation on Intel's Multicore and Manycore architectures". Concurrency and Computation: Practice and Experience. 27 (18): 5517–5537. doi:10.1002/cpe.3598. ISSN 1532-0634. S2CID 42945406.
  17. Rucci, Enzo; García, Carlos; Botella, Guillermo; De Giusti, Armando; Naiouf, Marcelo; Prieto-Matías, Manuel (2015-12-25). "SWIMM 2.0: enhanced Smith-Waterman on Intel's Multicore and Manycore architectures based on AVX-512 vector extensions". International Journal of Parallel Programming. 47 (2): 296–317. doi:10.1007/s10766-018-0585-7. ISSN 1573-7640. S2CID 49670113.
  18. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W; Kent; Smit; Zhang; Baertsch; Hardison; Haussler; Miller (2003). "Human-mouse alignments with BLASTZ". Genome Research. 13 (1): 103–107. doi:10.1101/gr.809403. PMC 430961. PMID 12529312.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. Harris R S (2007). Improved pairwise alignment of genomic DNA (Thesis).
  20. Sandes, Edans F. de O.; de Melo, Alba Cristina M.A. (May 2013). "Retrieving Smith-Waterman Alignments with Optimizations for Megabase Biological Sequences Using GPU". IEEE Transactions on Parallel and Distributed Systems. 24 (5): 1009–1021. doi:10.1109/TPDS.2012.194.
  21. Sandes, Edans F. de O.; Miranda, G.; De Melo, A.C.M.A.; Martorell, X.; Ayguade, E. (May 2014). CUDAlign 3.0: Parallel Biological Sequence Comparison in Large GPU Clusters. Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM International Symposium on. p. 160. doi:10.1109/CCGrid.2014.18.
  22. Sandes, Edans F. de O.; Miranda, G.; De Melo, A.C.M.A.; Martorell, X.; Ayguade, E. (August 2014). Fine-grain Parallel Megabase Sequence Comparison with Multiple Heterogeneous GPUs. Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. pp. 383–384. doi:10.1145/2555243.2555280.
  23. Chivian, D; Baker, D (2006). "Homology modeling using parametric alignment ensemble generation with consensus and energy-based model selection". Nucleic Acids Research. 34 (17): e112. doi:10.1093/nar/gkl480. PMC 1635247. PMID 16971460.
  24. Girdea, M; Noe, L; Kucherov, G (January 2010). "Back-translation for discovering distant protein homologies in the presence of frameshift mutations". Algorithms for Molecular Biology. 5 (6): 6. doi:10.1186/1748-7188-5-6. PMC 2821327. PMID 20047662.
  25. Ma, B.; Tromp, J.; Li, M. (2002). "PatternHunter: faster and more sensitive homology search". Bioinformatics. 18 (3): 440–445. doi:10.1093/bioinformatics/18.3.440. PMID 11934743.
  26. Li, M.; Ma, B.; Kisman, D.; Tromp, J. (2004). "Patternhunter II: highly sensitive and fast homology search". Journal of Bioinformatics and Computational Biology. 2 (3): 417–439. CiteSeerX 10.1.1.1.2393. doi:10.1142/S0219720004000661. PMID 15359419.
  27. Gusfield, Dan (1997). Algorithms on strings, trees and sequences. Cambridge university press. ISBN 978-0-521-58519-4.
  28. Rucci, Enzo; Garcia, Carlos; Botella, Guillermo; Naiouf, Marcelo; De Giusti,Armando; Prieto-Matias, Manuel (2018). "SWIFOLD: Smith-Waterman implementation on FPGA with OpenCL for long DNA sequences". BMC Systems Biology. 12 (Suppl 5): 96. doi:10.1186/s12918-018-0614-6. PMC 6245597. PMID 30458766.
  29. Rucci, Enzo; Garcia, Carlos; Botella, Guillermo; Naiouf, Marcelo; De Giusti,Armando; Prieto-Matias, Manuel. Accelerating Smith-Waterman Alignment of Long DNA Sequences with OpenCL on FPGA. 5th International Work-Conference on Bioinformatics and Biomedical Engineering. pp. 500–511. doi:10.1007/978-3-319-56154-7_45.
  30. Rasmussen K, Stoye J, Myers EW; Stoye; Myers (2006). "Efficient q-Gram Filters for Finding All epsilon-Matches over a Given Length". Journal of Computational Biology. 13 (2): 296–308. CiteSeerX 10.1.1.465.2084. doi:10.1089/cmb.2006.13.296. PMID 16597241.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. Noe L, Kucherov G; Kucherov (2005). "YASS: enhancing the sensitivity of DNA similarity search". Nucleic Acids Research. 33 (suppl_2): W540–W543. doi:10.1093/nar/gki478. PMC 1160238. PMID 15980530.
  32. Pratas, Diogo; Silva, Jorge (2020). "Persistent minimal sequences of SARS-CoV-2". Bioinformatics. 36 (21): 5129–5132. doi:10.1093/bioinformatics/btaa686. PMC 7559010. PMID 32730589.
  33. Wilton, Richard; Budavari, Tamas; Langmead, Ben; Wheelan, Sarah J.; Salzberg, Steven L.; Szalay, Alexander S. (2015). "Arioc: high-throughput read alignment with GPU-accelerated exploration of the seed-and-extend search space". PeerJ. 3: e808. doi:10.7717/peerj.808. PMC 4358639. PMID 25780763.
  34. Homer, Nils; Merriman, Barry; Nelson, Stanley F. (2009). "BFAST: An Alignment Tool for Large Scale Genome Resequencing". PLOS ONE. 4 (11): e7767. Bibcode:2009PLoSO...4.7767H. doi:10.1371/journal.pone.0007767. PMC 2770639. PMID 19907642.
  35. Abuín, J.M.; Pichel, J.C.; Pena, T.F.; Amigo, J. (2015). "BigBWA: approaching the Burrows–Wheeler aligner to Big Data technologies". Bioinformatics. 31 (24): 4003–5. doi:10.1093/bioinformatics/btv506. PMID 26323715.
  36. Kent, W. J. (2002). "BLAT---The BLAST-Like Alignment Tool". Genome Research. 12 (4): 656–664. doi:10.1101/gr.229202. ISSN 1088-9051. PMC 187518. PMID 11932250.
  37. Langmead, Ben; Trapnell, Cole; Pop, Mihai; Salzberg, Steven L (2009). "Ultrafast and memory-efficient alignment of short DNA sequences to the human genome". Genome Biology. 10 (3): R25. doi:10.1186/gb-2009-10-3-r25. ISSN 1465-6906. PMC 2690996. PMID 19261174.
  38. Li, H.; Durbin, R. (2009). "Fast and accurate short read alignment with Burrows–Wheeler transform". Bioinformatics. 25 (14): 1754–1760. doi:10.1093/bioinformatics/btp324. ISSN 1367-4803. PMC 2705234. PMID 19451168.
  39. Kerpedjiev, Peter; Frellsen, Jes; Lindgreen, Stinus; Krogh, Anders (2014). "Adaptable probabilistic mapping of short reads using position specific scoring matrices". BMC Bioinformatics. 15 (1): 100. doi:10.1186/1471-2105-15-100. ISSN 1471-2105. PMC 4021105. PMID 24717095.
  40. Liu, Y.; Schmidt, B.; Maskell, D. L. (2012). "CUSHAW: a CUDA compatible short read aligner to large genomes based on the Burrows–Wheeler transform". Bioinformatics. 28 (14): 1830–1837. doi:10.1093/bioinformatics/bts276. ISSN 1367-4803. PMID 22576173.
  41. Liu, Y.; Schmidt, B. (2012). "Long read alignment based on maximal exact match seeds". Bioinformatics. 28 (18): i318–i324. doi:10.1093/bioinformatics/bts414. ISSN 1367-4803. PMC 3436841. PMID 22962447.
  42. Rizk, Guillaume; Lavenier, Dominique (2010). "GASSST: global alignment short sequence search tool". Bioinformatics. 26 (20): 2534–2540. doi:10.1093/bioinformatics/btq485. PMC 2951093. PMID 20739310.
  43. Marco-Sola, Santiago; Sammeth, Michael; Guigó, Roderic; Ribeca, Paolo (2012). "The GEM mapper: fast, accurate and versatile alignment by filtration". Nature Methods. 9 (12): 1185–1188. doi:10.1038/nmeth.2221. ISSN 1548-7091. PMID 23103880. S2CID 2004416.
  44. Clement, N. L.; Snell, Q.; Clement, M. J.; Hollenhorst, P. C.; Purwar, J.; Graves, B. J.; Cairns, B. R.; Johnson, W. E. (2009). "The GNUMAP algorithm: unbiased probabilistic mapping of oligonucleotides from next-generation sequencing". Bioinformatics. 26 (1): 38–45. doi:10.1093/bioinformatics/btp614. ISSN 1367-4803. PMC 6276904. PMID 19861355.
  45. Santana-Quintero, Luis; Dingerdissen, Hayley; Thierry-Mieg, Jean; Mazumder, Raja; Simonyan, Vahan (2014). "HIVE-Hexagon: High-Performance, Parallelized Sequence Alignment for Next-Generation Sequencing Data Analysis". PLOS ONE. 9 (6): 1754–1760. Bibcode:2014PLoSO...999033S. doi:10.1371/journal.pone.0099033. PMC 4053384. PMID 24918764.
  46. Kielbasa, S.M.; Wan, R.; Sato, K.; Horton, P.; Frith, M.C. (2011). "Adaptive seeds tame genomic sequence comparison". Genome Research. 21 (3): 487–493. doi:10.1101/gr.113985.110. PMC 3044862. PMID 21209072.
  47. Rivals, Eric; Salmela, Leena; Kiiskinen, Petteri; Kalsi, Petri; Tarhio, Jorma (2009). "Mpscan: Fast Localisation of Multiple Reads in Genomes". Algorithms in Bioinformatics. Lecture Notes in Computer Science. Vol. 5724. pp. 246–260. Bibcode:2009LNCS.5724..246R. CiteSeerX 10.1.1.156.928. doi:10.1007/978-3-642-04241-6_21. ISBN 978-3-642-04240-9. S2CID 17187140.
  48. Sedlazeck, Fritz J.; Rescheneder, Philipp; von Haeseler, Arndt (2013). "NextGenMap: fast and accurate read mapping in highly polymorphic genomes". Bioinformatics. 29 (21): 2790–2791. doi:10.1093/bioinformatics/btt468. PMID 23975764.
  49. Chen, Yangho; Souaiaia, Tade; Chen, Ting (2009). "PerM: efficient mapping of short sequencing reads with periodic full sensitive spaced seeds". Bioinformatics. 25 (19): 2514–2521. doi:10.1093/bioinformatics/btp486. PMC 2752623. PMID 19675096.
  50. Searls, David B.; Hoffmann, Steve; Otto, Christian; Kurtz, Stefan; Sharma, Cynthia M.; Khaitovich, Philipp; Vogel, Jörg; Stadler, Peter F.; Hackermüller, Jörg (2009). "Fast Mapping of Short Sequences with Mismatches, Insertions and Deletions Using Index Structures". PLOS Computational Biology. 5 (9): e1000502. Bibcode:2009PLSCB...5E0502H. doi:10.1371/journal.pcbi.1000502. ISSN 1553-7358. PMC 2730575. PMID 19750212.
  51. Rumble, Stephen M.; Lacroute, Phil; Dalca, Adrian V.; Fiume, Marc; Sidow, Arend; Brudno, Michael (2009). "SHRiMP: Accurate Mapping of Short Color-space Reads". PLOS Computational Biology. 5 (5): e1000386. Bibcode:2009PLSCB...5E0386R. doi:10.1371/journal.pcbi.1000386. PMC 2678294. PMID 19461883.
  52. David, Matei; Dzamba, Misko; Lister, Dan; Ilie, Lucian; Brudno, Michael (2011). "SHRiMP2: Sensitive yet Practical Short Read Mapping". Bioinformatics. 27 (7): 1011–1012. doi:10.1093/bioinformatics/btr046. PMID 21278192.
  53. Malhis, Nawar; Butterfield, Yaron S. N.; Ester, Martin; Jones, Steven J. M. (2009). "Slider – Maximum use of probability information for alignment of short sequence reads and SNP detection". Bioinformatics. 25 (1): 6–13. doi:10.1093/bioinformatics/btn565. PMC 2638935. PMID 18974170.
  54. Malhis, Nawar; Jones, Steven J. M. (2010). "High Quality SNP Calling Using Illumina Data at Shallow Coverage". Bioinformatics. 26 (8): 1029–1035. doi:10.1093/bioinformatics/btq092. PMID 20190250.
  55. Li, R.; Li, Y.; Kristiansen, K.; Wang, J. (2008). "SOAP: short oligonucleotide alignment program". Bioinformatics. 24 (5): 713–714. doi:10.1093/bioinformatics/btn025. ISSN 1367-4803. PMID 18227114.
  56. Li, R.; Yu, C.; Li, Y.; Lam, T.-W.; Yiu, S.-M.; Kristiansen, K.; Wang, J. (2009). "SOAP2: an improved ultrafast tool for short read alignment". Bioinformatics. 25 (15): 1966–1967. doi:10.1093/bioinformatics/btp336. ISSN 1367-4803. PMID 19497933.
  57. Abuín, José M.; Pichel, Juan C.; Pena, Tomás F.; Amigo, Jorge (2016-05-16). "SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data". PLOS ONE. 11 (5): e0155461. Bibcode:2016PLoSO..1155461A. doi:10.1371/journal.pone.0155461. ISSN 1932-6203. PMC 4868289. PMID 27182962.
  58. Lunter, G.; Goodson, M. (2010). "Stampy: A statistical algorithm for sensitive and fast mapping of Illumina sequence reads". Genome Research. 21 (6): 936–939. doi:10.1101/gr.111120.110. ISSN 1088-9051. PMC 3106326. PMID 20980556.
  59. Noe, L.; Girdea, M.; Kucherov, G. (2010). "Designing efficient spaced seeds for SOLiD read mapping". Advances in Bioinformatics. 2010: 708501. doi:10.1155/2010/708501. PMC 2945724. PMID 20936175.
  60. Lin, H.; Zhang, Z.; Zhang, M.Q.; Ma, B.; Li, M. (2008). "ZOOM! Zillions of oligos mapped". Bioinformatics. 24 (21): 2431–2437. doi:10.1093/bioinformatics/btn416. PMC 2732274. PMID 18684737.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.