Carbonate chloride

The carbonate chlorides are double salts containing both carbonate and chloride anions. Quite a few minerals are known. Several artificial compounds have been made. Some complexes have both carbonate and chloride ligands. They are part of the family of halocarbonates. In turn these halocarbonates are a part of mixed anion materials.

The carbonate chlorides do not have a bond from chlorine to carbon, however "chlorocarbonate" has also been used to refer to the chloroformates which contain the group ClC(O)O-.

Formation

Natural

Scapolite is produced in nature by metasomatism, where hot high pressure water solutions of carbon dioxide and sodium chloride modify plagioclase.[1]

Chloroartinite is found in Sorel cements exposed to air.[2]

Minerals

In 2016 27 chloride containing carbonate minerals were known.[3]

name formula crystal system space group unit cell density Optics refractive index Raman spectrum comments reference
Alexkhomyakovite K6(Ca2Na)(CO3)5Cl∙6H2O hexagonal P63/mcm a=9.2691, c=15.8419, V=1178.72 Z = 2 2.25 uniaxial (–), ω=1.543, ε=1.476 [4]
Ashburtonite HPb4Cu4(Si4O12)(HCO3)4(OH)4Cl [3]
Balliranoite (Na,K)6Ca2(Si6Al6O24)Cl2(CO3) hexagonal P63 a=12.695 c=5.325 V=743.2 Z=1 2.48 uniaxial (+), ω=1.523, ε=1.525 [5]
Barstowite Pb4(CO3)Cl6.H2O
Chlorartinite Mg2(CO3)Cl(OH).3H2O
Chlormagaluminite (Mg,Fe2+)4Al2(OH)12(Cl, 0.5 CO3)2·2H2O 6/mmm 1.98-2.09 ε=1.560 ω=1.540 [6]
Davyne can substitute CO3 for SO4 [7]
Decrespignyite-(Y) Y4Cu(CO3)4Cl(OH)5·2H2O V4 bending 694, 718 and 746; V2 bending 791, 815, 837 and 849;v3 antisymmetric stretching 1391, 1414, 1489, 1547; also OH stretching[8] light blue [9]
Defernite Ca3CO3(OH,Cl)4.H2O
Hanksite Na22K(SO4)9(CO3)2Cl hexagonal P63/m a = 10.46 Å

c = 21.19 Å; Z = 2

iowaite Mg6Fe2(Cl,(CO3)0.5)(OH)16·4H2O [10]
Kampfite Ba12(Si11Al5)O31(CO3)8Cl5 monoclinic Cc a = 31.2329, b=5.2398, c=9.0966

β = 106.933°

uniaxial (–), nω = 1.642 nε = 1.594 [11]
Marialite Na4(AlSi3O8)3(Cl2,CO3,SO4)
Mineevite-(Y) Na25BaY2(CO3)11(HCO3)4(SO4)2F2Cl [12]
Northupite Na3Mg(CO3)2Cl octahedral Fd3 Z=16 1.514 v4 bending 714; v3 antisymmetric stretching 1554[8] [13][14]
Phosgenite Pb2CO3Cl2 tetragonal a=8.15 c=8.87 [13]
Reederite-(Y) Na15Y2(CO3)9(SO3F)Cl [12]
Sakhaite (with Harkerite) Ca48Mg16Al(SiO3OH)4(CO3)16(BO3)28·(H2O)3(HCl)3or Ca12Mg4(BO3)7(CO3)4Cl(OH)2·H2O [3]
Scapolite Ca3Na5[Al8Si16O48]Cl(CO3) P42/n a=12.07899 c=7.583467 V=1106.443 [15]
Tatarskite Ca6Mg2(SO4)2(CO3)2(OH)4Cl4•7H2O orthorhombic Biaxial (-) nα = 1.567 nβ = 1.654 nγ = 1.722 [16]
Tunisite NaCa2Al4(CO3)4Cl(OH)8 tetragonal P4/nmm a=11.198 c=6.5637 Z=2
Vasilyevite (Hg2)10O6I3Br2Cl(CO3) P1 overbar a 9.344, b 10.653, c 18.265, α=93.262 β=90.548 γ=115.422° V=1638.3 Z=2 9.57

Artificial

name formula crystal system space group unit cell in Å density comment reference
K5Na2Cu24(CO3)16Cl3(OH)20•12H2O cubic F23 a=15.463 V=3697.5 Z=2 3.044 dark blue [17]
Y8O(OH)15(CO3)3Cl 1197.88 hexagonal P63 a=9.5089 c=14.6730 Z=2 V=1148.97 3.462 [18]
Lu8O(OH)15(CO3)3Cl 1886.32 hexagonal P63 a=9.354 c=14.415 V=1092.3 Z=2 5.689 colourless [19]
Y3(OH)6(CO3)Cl cubic Im3m a=12.66 V=2032 Z=8 3.035 colourless [20]
Dy3(OH)6(CO3)Cl cubic Im3 a=12.4754 V=1941.6 Z=8 4.687 colourless [20]
Er3(OH)6(CO3)Cl cubic Im3m a=12.4127 V=1912.5 Z=8 4.857 pink [20]
K{Mg(H2O)6}2[Ru2(CO3)4Cl2]·4H2O 889.06 monoclinic P21/c a=11.6399 b=11.7048 c=11.8493 β=119.060 V=1411.6 Z=2 2.092 red-brown [21]
K2[{Mg(H2O)4}2Ru2(CO3)4(H2O)Cl]Cl2·2H2O 880.58 orthorhombic Fmm2 a=14.392 b=15.699 c=10.741 V=2426.8 Z=4 2.391 dark brown [21]
trisodium cobalt dicarbonate chloride Na3Co(CO3)2Cl cubic Fd3 a=13.9959 Z=16 2.75 spin-frustrated antiferromagnetic [3][22]
trisodium manganese dicarbonate chloride Na3Mn(CO3)2Cl cubic a=14.163 brown [23]
di-magnesium hexahydrate trihydrogencarbonate chloride Mg2(H2O)6(HCO3)3Cl R3c a=8.22215 c=39.5044 V=2312.85 Z=6 1.61 decompose 125 °C [2]
tripotassium tricalcium selenite tricarbonate chloride K3Ca3(SeO3)(CO3)3Cl 579.97 hexagonal P63 a=10.543 c=7.060 V=706.0 Z=2 2.991 [24]
LiBa9[Si10O25]Cl7(CO3) Z=2 3.85 layer silicate [25][26]
Ba3Cl4CO3 orthorhombic Pnma a=8.407, b=9.589, c=12.483 Z=4 [27]

Complexes

The "lanthaballs" are lanthanoid atom clusters held together by carbonate and other ligands. They can form chlorides. Examples are [La13(ccnm)6(CO3)14(H2O)6(phen)18] Cl3(CO3)·25H2O where ccnm is carbamoylcyanonitrosomethanide and phen is 1,10-phenanthroline. Praseodymium (Pr) or cerium (Ce) can substitute for lanthanum (La).[28] Other lanthanide cluster compounds include :(H3O)6[Dy76O10(OH)138(OAc)20(L)44(H2O)34]•2CO3•4 Cl2•L•2OAc (nicknamed Dy76) and (H3O)6[Dy48O6(OH)84(OAc)4(L)15(hmp)18(H2O)20]•CO3•14Cl•2H2O (termed Dy48-T) with OAc=acetate, and L=3-furancarboxylate and Hhmp=2,2-bis(hydroxymethyl)propionic acid.[29]

Platinum can form complexes with carbonate and chloride ligands, in addition to an amino acid. Examples include the platinum compound [Pt(gluH)Cl(CO3)]2.2H2O gluH=glutamic acid, and Na[Pt(gln)Cl2(CO3)].H2O gln=glutamine.[30] Rhodium complexes include Rh2(bipy)2(CO3)2Cl (bipy=bipyridine)[31]

References

  1. Harlov, D. E.; Budzyn, B. (December 2008). "The stability of Cl-CO3-scapolite relative to plagioclase + CaCO3 + CaSO4 in the presence of NaCl brines as a function of P-T-XNaCl". AGUFM. 2008: V31C–2156–2156. Bibcode:2008AGUFM.V31C2156H.
  2. Dinnebier, Robert E.; Jansen, Martin (2008-12-01). "The Crystal Structure of [Mg2(H2O)6(HCO3)3]+Cl–, Containing a Magnesium-based Hetero-polycation". Zeitschrift für Naturforschung B. 63 (12): 1347–1351. doi:10.1515/znb-2008-1201. ISSN 1865-7117. S2CID 196866126.
  3. Hazen, Robert M.; Hummer, Daniel R.; Hystad, Grethe; Downs, Robert T.; Golden, Joshua J. (April 2016). "Carbon mineral ecology: Predicting the undiscovered minerals of carbon". American Mineralogist. 101 (4): 889–906. Bibcode:2016AmMin.101..889H. doi:10.2138/am-2016-5546. ISSN 0003-004X. S2CID 741788.
  4. Pekov, Igor V.; Zubkova, Natalia V.; Yapaskurt, Vasiliy O.; Lykova, Inna S.; Chukanov, Nikita V.; Belakovskiy, Dmitry I.; Britvin, Sergey N.; Turchkova, Anna G.; Pushcharovsky, Dmitry Y. (2019-02-21). "Alexkhomyakovite, K6(Ca2Na)(CO3)5Cl∙6H2O, a new mineral from the Khibiny alkaline complex, Kola peninsula, Russia". European Journal of Mineralogy. 31 (1): 135–143. Bibcode:2019EJMin..31..135P. doi:10.1127/ejm/2018/0030-2798. ISSN 0935-1221. S2CID 134451790.
  5. Chukanov, Nikita V.; Zubkova, Natalia V.; Pekov, Igor V.; Olysych, Lyudmila V.; Bonaccorsi, Elena; Pushcharovsky, Dmitry YU. (2010-03-18). "Balliranoite, (Na,K)6Ca2(Si6Al6O24)Cl2(CO3), a new cancrinite-group mineral from Monte Somma Vesuvio volcanic complex, Italy". European Journal of Mineralogy. 22 (1): 113–119. Bibcode:2010EJMin..22..113C. doi:10.1127/0935-1221/2010/0022-1983. ISSN 0935-1221.
  6. Kashayev, A. A.; Feoktistov, G. D.; Petrova, S. V. (July 1983). "Chlormagaluminite (Mg, Fe 2+ ) 4 Al 2 (OH) 12 (Cl, 1/2 CO 3 ) 2 ·2H 2 O-a new mineral of the manasseite-sjogrenite group". International Geology Review. 25 (7): 848–853. Bibcode:1983IGRv...25..848K. doi:10.1080/00206818309466774. ISSN 0020-6814.
  7. BALLIRANO, PAOLO (1998). "CARBONATEGROUPSIN DAWNE:STRUCTURAL AND CRYSTAL.CHEMICAL CONSIDERATIONs" (PDF). The Canadian Mineralogist. 36: 1285–1292.
  8. Frost, Ray L.; Palmer, Sara J. (2011-11-15). "Raman spectrum of decrespignyite [(Y,REE)4Cu(CO3)4Cl(OH)5·2H2O] and its relation with those of other halogenated carbonates including bastnasite, hydroxybastnasite, parisite and northupite". Journal of Raman Spectroscopy. 42 (11): 2042–2048. Bibcode:2011JRSp...42.2042F. doi:10.1002/jrs.2959.
  9. Wallwork, K.; Kolitsch, U.; Pring, A.; Nasdala, L. (February 2002). "Decrespignyite-(Y), a new copper yttrium rare earth carbonate chloride hydrate from Paratoo, South Australia". Mineralogical Magazine. 66 (1): 181–188. Bibcode:2002MinM...66..181W. doi:10.1180/0026461026610021. ISSN 0026-461X. S2CID 4820053.
  10. Frost, R. L.; Erickson, K. L. (2004). "Thermal decomposition of natural iowaite" (PDF). Journal of Thermal Analysis and Calorimetry. 78 (2): 367–373. doi:10.1023/B:JTAN.0000046103.00586.61. ISSN 1388-6150. S2CID 97065830.
  11. "Kampfite: Mineral information, data and localities". www.mindat.org. Retrieved 2019-11-26.
  12. Harlov, Daniel E.; Aranovich, Leonid (2018-01-30). The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Springer. ISBN 978-3-319-61667-4.
  13. Ivan Kostov, Ruslan I. Kostov (2016). "Systematics and crystal genesis of carbonate minerals" (PDF). ANNUAL OF THE UNIVERSITY OF MINING AND GEOLOGY "ST. IVAN RILSKI", Part I, Geology and Geophysics. 49: 111–118.
  14. Batsanov, Stepan S.; Ruchkin, Evgeny D.; Poroshina, Inga A. (2016-08-10). Refractive Indices of Solids. Springer. p. 61. ISBN 978-981-10-0797-2.
  15. Antao, S. M.; Hassan, I. (2011-04-01). "COMPLETE Al-Si ORDER IN SCAPOLITE Me37.5, IDEALLY Ca3Na5[Al8Si16O48]Cl(CO3), AND IMPLICATIONS FOR ANTIPHASE DOMAIN BOUNDARIES (APBs)". The Canadian Mineralogist. 49 (2): 581–586. Bibcode:2011CaMin..49..581A. doi:10.3749/canmin.49.2.581. ISSN 0008-4476.
  16. "Tatarskite: Mineral information, data and localities". www.mindat.org. Retrieved 10 May 2020.
  17. Sokolova, Elena; Hawthorne, Frank C. (2003). "The Crystal Structure Of An Anthropogenic Cu–k–na–hydro-Hydroxyl–carbonate–chloride From Johanngeorgenstadt, Saxony, Germany". The Canadian Mineralogist. 41 (4): 929–936. Bibcode:2003CaMin..41..929S. doi:10.2113/gscanmin.41.4.929.
  18. Zhang, Yiting; Long, Ying; Dong, Xuehua; Wang, Lei; Huang, Ling; Zeng, Hongmei; Lin, Zhien; Wang, Xin; Zou, Guohong (2019). "Y 8 O(OH) 15 (CO 3 ) 3 Cl: an excellent short-wave UV nonlinear optical material exhibiting an infrequent three-dimensional inorganic cationic framework". Chemical Communications. 55 (31): 4538–4541. doi:10.1039/C9CC00581A. ISSN 1359-7345. PMID 30924839. S2CID 85566544.
  19. Cao, Liling; Song, Yunxia; Peng, Guang; Luo, Min; Yang, Yi; Lin, Chen-sheng; Zhao, Dan; Xu, Feng; Lin, Zheshuai; Ye, Ning (2019-03-26). "Refractive Index Modulates Second-Harmonic Responses in RE 8 O(CO 3 ) 3 (OH) 15 X (RE = Y, Lu; X = Cl, Br): Rare-Earth Halide Carbonates as Ultraviolet Nonlinear Optical Materials". Chemistry of Materials. 31 (6): 2130–2137. doi:10.1021/acs.chemmater.9b00068. ISSN 0897-4756. S2CID 107652980.
  20. Wang, Yanyan; Han, Tian; Ding, You-Song; Zheng, Zhiping; Zheng, Yan-Zhen (2016). "Sodalite-like rare-earth carbonates: a study of structural transformation and diluted magnetism". Dalton Transactions. 45 (3): 1103–1110. doi:10.1039/C5DT03314D. ISSN 1477-9226. PMID 26660232.
  21. Yang, Jian-Hui; Cheng, Ru-Mei; Jia, Yan-Yan; Jin, Jin; Yang, Bing-Bing; Cao, Zhi; Liu, Bin (2016). "Chlorine and temperature directed self-assembly of Mg–Ru 2 ( ii , iii ) carbonates and particle size dependent magnetic properties". Dalton Transactions. 45 (7): 2945–2954. doi:10.1039/C5DT04463D. ISSN 1477-9226. PMID 26750871.
  22. Fu, Zhendong (2012). Spin Correlations and Excitations in Spin-frustrated Molecular and Molecule-based Magnets. Forschungszentrum Jülich. pp. 97–165. ISBN 978-3-89336-797-9.
  23. Nawa, Kazuhiro; Okuyama, Daisuke; Avdeev, Maxim; Nojiri, Hiroyuki; Yoshida, Masahiro; Ueta, Daichi; Yoshizawa, Hideki; Sato, Taku J. (2018-10-18). "Degenerate ground state in the classical pyrochlore antiferromagnet Na 3 Mn ( CO 3 ) 2 Cl". Physical Review B. 98 (14): 144426. arXiv:1810.05126. Bibcode:2018PhRvB..98n4426N. doi:10.1103/PhysRevB.98.144426. ISSN 2469-9950. S2CID 119245230.
  24. Schmitz, Dieter (2001). "Synthese, Charakterisierung und Bildungsprinzipien von sauren und neutralen Oxoselenaten(IV) und Oxoselenat(IV)-hydraten" (in German): 182 via Fachbereich 8. {{cite journal}}: Cite journal requires |journal= (help)
  25. "LiBa9[Si10O25]Cl7(CO3) (LiBa9Si10[CO3]Cl7O25) Crystal Structure - SpringerMaterials". materials.springer.com. Retrieved 2019-11-27.
  26. Il'Inets, A. M.; Nevskii, N. N.; Ilyukhin, V. V.; Belov, N. V. (March 1983). "A new type of infinite silicate radical [Si10O25] in the synthetic compound LiBa9[Si10O25]CI7(CO3)". SPHD. 28: 213. Bibcode:1983SPhD...28..213I.
  27. Leyva-Bailen, Patricia; Vaqueiro, Paz; Powell, Anthony V. (September 2009). "Ionothermal synthesis of the mixed-anion material, Ba3Cl4CO3". Journal of Solid State Chemistry. 182 (9): 2333–2337. Bibcode:2009JSSCh.182.2333L. doi:10.1016/j.jssc.2009.06.019.
  28. Chesman, Anthony S. R.; Turner, David R.; Langley, Stuart K.; Moubaraki, Boujemaa; Murray, Keith S.; Deacon, Glen B.; Batten, Stuart R. (2015-02-02). "Synthesis and Structure of New Lanthanoid Carbonate "Lanthaballs"". Inorganic Chemistry. 54 (3): 792–800. doi:10.1021/ic5016115. ISSN 0020-1669. PMID 25349948.
  29. Li, Xiao-Yu; Su, Hai-Feng; Li, Quan-Wen; Feng, Rui; Bai, Hui-Yun; Chen, Hua-Yu; Xu, Jian; Bu, Xian-He (22 July 2019). "A Giant Dy76 Cluster: A Fused Bi-Nanopillar Structural Model for Lanthanide Clusters". Angewandte Chemie International Edition. 58 (30): 10184–10188. doi:10.1002/anie.201903817. PMID 31090998. S2CID 155089115.
  30. Shatnawi, Razan Ahmad Mahmoud (November 2013). Synthesis and Characterization of Some Amino Acid Complexes with Metal Ions. Yarmouk University (Article).
  31. Davidson, G.; Ebsworth, E. A. V. (2007). Spectroscopic Properties of Inorganic and Organometallic Compounds. Royal Society of Chemistry. p. 294. ISBN 978-1-84755-506-9.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.