Dennis Sullivan

Dennis Parnell Sullivan (born February 12, 1941) is an American mathematician known for his work in algebraic topology, geometric topology, and dynamical systems. He holds the Albert Einstein Chair at the City University of New York Graduate Center and is a distinguished professor at Stony Brook University.

Dennis Sullivan
Sullivan in 2007
Born
Dennis Parnell Sullivan

(1941-02-12) February 12, 1941
EducationRice University (BA)
Princeton University (MA, PhD)
Known for
Awards
Scientific career
FieldsMathematics
InstitutionsStony Brook University
City University of New York
ThesisTriangulating Homotopy Equivalences (1966)
Doctoral advisorWilliam Browder
Doctoral studentsHarold Abelson
Curtis T. McMullen

Sullivan was awarded the Wolf Prize in Mathematics in 2010 and the Abel Prize in 2022.

Early life and education

Sullivan was born in Port Huron, Michigan, on February 12, 1941.[1][2] His family moved to Houston soon afterwards.[1][2]

He entered Rice University to study chemical engineering but switched his major to mathematics in his second year after encountering a particularly motivating mathematical theorem.[2][3] The change was prompted by a special case of the uniformization theorem, according to which, in his own words:

[A]ny surface topologically like a balloon, and no matter what shape—a banana or the statue of David by Michelangelo—could be placed on to a perfectly round sphere so that the stretching or squeezing required at each and every point is the same in all directions at each such point.[4]

He received his Bachelor of Arts degree from Rice in 1963.[2] He obtained his Doctor of Philosophy from Princeton University in 1966 with his thesis, Triangulating homotopy equivalences, under the supervision of William Browder.[2][5]

Career

Sullivan worked at the University of Warwick on a NATO Fellowship from 1966 to 1967.[6] He was a Miller Research Fellow at the University of California, Berkeley from 1967 to 1969 and then a Sloan Fellow at Massachusetts Institute of Technology from 1969 to 1973.[6] He was a visiting scholar at the Institute for Advanced Study in 1967–1968, 1968–1970, and again in 1975.[7]

Sullivan was an associate professor at Paris-Sud University from 1973 to 1974, and then became a permanent professor at the Institut des Hautes Études Scientifiques (IHÉS) in 1974.[6][8] In 1981, he became the Albert Einstein Chair in Science (Mathematics) at the Graduate Center, City University of New York[9] and reduced his duties at the IHÉS to a half-time appointment.[1] He joined the mathematics faculty at Stony Brook University in 1996[6] and left the IHÉS the following year.[6][8]

Sullivan was involved in the founding of the Simons Center for Geometry and Physics and is a member of its board of trustees.[10]

Research

Geometric topology

Along with Browder and his other students, Sullivan was an early adopter of surgery theory, particularly for classifying high-dimensional manifolds.[2][3][1] His thesis work was focused on the Hauptvermutung.[1]

In an influential set of notes in 1970, Sullivan put forward the radical concept that, within homotopy theory, spaces could directly "be broken into boxes"[11] (or localized), a procedure hitherto applied to the algebraic constructs made from them.[3][12]

The Sullivan conjecture, proved in its original form by Haynes Miller, states that the classifying space BG of a finite group G is sufficiently different from any finite CW complex X, that it maps to such an X only 'with difficulty'; in a more formal statement, the space of all mappings BG to X, as pointed spaces and given the compact-open topology, is weakly contractible.[13] Sullivan's conjecture was also first presented in his 1970 notes.[3][12][13]

Sullivan and Daniel Quillen (independently) created rational homotopy theory in the late 1960s and 1970s.[14][15][3][16] It examines "rationalizations" of simply connected topological spaces with homotopy groups and singular homology groups tensored with the rational numbers, ignoring torsion elements and simplifying certain calculations.[16]

Kleinian groups

Sullivan and William Thurston generalized Lipman Bers' density conjecture from singly degenerate Kleinian surface groups to all finitely generated Kleinian groups in the late 1970s and early 1980s.[17][18] The conjecture states that every finitely generated Kleinian group is an algebraic limit of geometrically finite Kleinian groups, and was independently proven by Ohshika and Namazi–Souto in 2011 and 2012 respectively.[17][18]

Conformal and quasiconformal mappings

The Connes–Donaldson–Sullivan–Teleman index theorem is an extension of the Atiyah–Singer index theorem to quasiconformal manifolds due to a joint paper by Simon Donaldson and Sullivan in 1989 and a joint paper by Alain Connes, Sullivan, and Nicolae Teleman in 1994.[19][20]

In 1987, Sullivan and Burton Rodin proved Thurston's conjecture about the approximation of the Riemann map by circle packings.[21]

String topology

Sullivan and Moira Chas started the field of string topology, which examines algebraic structures on the homology of free loop spaces.[22][23] They developed the Chas–Sullivan product to give a partial singular homology analogue of the cup product from singular cohomology.[22][23] String topology has been used in multiple proposals to construct topological quantum field theories in mathematical physics.[24]

Dynamical systems

In 1975, Sullivan and Bill Parry introduced the topological Parry–Sullivan invariant for flows in one-dimensional dynamical systems.[25][26]

In 1985, Sullivan proved the no-wandering-domain theorem.[3] This result was described by mathematician Anthony Philips as leading to a "revival of holomorphic dynamics after 60 years of stagnation."[1]

Awards and honors

Personal life

Sullivan is married to fellow mathematician Moira Chas.[3][4]

See also

References

  1. Phillips, Anthony (2005), "Dennis Sullivan – A Short History", in Lyubich, Mikhail; Takhtadzhi͡an, Leon Armenovich (eds.), Graphs and patterns in mathematics and theoretical physics, Proceedings of Symposia in Pure Mathematics, vol. 73, Providence: American Mathematical Society, p. xiii, ISBN 0-8218-3666-8, archived from the original on July 28, 2014, retrieved March 31, 2016.
  2. Chang, Kenneth (March 23, 2022). "Abel Prize for 2022 Goes to New York Mathematician". The New York Times. Archived from the original on March 23, 2022. Retrieved March 23, 2022.
  3. Cepelewicz, Jordana (March 23, 2022). "Dennis Sullivan, Uniter of Topology and Chaos, Wins the Abel Prize". Quanta Magazine. Archived from the original on March 23, 2022. Retrieved March 23, 2022.
  4. Desikan, Shubashree (March 23, 2022). "Abel prize for 2022 goes to American mathematician Dennis P. Sullivan". The Hindu. Retrieved March 25, 2022.
  5. Dennis Sullivan at the Mathematics Genealogy Project
  6. "Dennis Parnell Sullivan Awarded the 2022 Abel Prize for Mathematics". Stony Brook University. March 23, 2022. Archived from the original on March 24, 2022. Retrieved March 23, 2022.
  7. "Dennis P. Sullivan". Institute for Advanced Study. December 9, 2019. Archived from the original on March 23, 2022. Retrieved March 23, 2022.
  8. "Dennis Sullivan, Mathematician". Institut des Hautes Études Scientifiques. Archived from the original on November 22, 2021. Retrieved March 23, 2022.
  9. "Science Faculty Spotlight: Dennis Sullivan". Graduate Center, CUNY. April 29, 2017. Archived from the original on March 24, 2022. Retrieved March 23, 2022.
  10. "Dennis Sullivan Awarded the 2022 Abel Prize in Mathematics". Simons Center for Geometry and Physics. March 23, 2022. Retrieved March 25, 2022.
  11. Cepelewicz, Jordana (March 23, 2022). "Dennis Sullivan, Uniter of Topology and Chaos, Wins the Abel Prize". Quanta Magazine. Retrieved March 24, 2022.
  12. Sullivan, Dennis P. (2005). Ranicki, Andrew (ed.). Geometric Topology: Localization, Periodicity and Galois Symmetry: The 1970 MIT Notes (PDF). K-Monographs in Mathematics. Dordrecht: Springer. ISBN 1-4020-3511-X. Archived (PDF) from the original on April 18, 2007. Retrieved October 8, 2006.
  13. Miller, Haynes (1984). "The Sullivan Conjecture on Maps from Classifying Spaces". Annals of Mathematics. 120 (1): 39–87. doi:10.2307/2007071. JSTOR 2007071.
  14. Quillen, Daniel (1969), "Rational homotopy theory", Annals of Mathematics, 90 (2): 205–295, doi:10.2307/1970725, JSTOR 1970725, MR 0258031
  15. Sullivan, Dennis (1977). "Infinitesimal computations in topology". Publications Mathématiques de l'IHÉS. 47: 269–331. doi:10.1007/BF02684341. MR 0646078. S2CID 42019745. Archived from the original on May 3, 2007. Retrieved November 1, 2007.
  16. Hess, Kathryn (1999). "A history of rational homotopy theory". In James, Ioan M. (ed.). History of Topology. Amsterdam: North-Holland. pp. 757–796. doi:10.1016/B978-044482375-5/50028-6. ISBN 0-444-82375-1. MR 1721122.
  17. Namazi, Hossein; Souto, Juan (2012). "Non-realizability and ending laminations: Proof of the density conjecture". Acta Mathematica. 209 (2): 323–395. doi:10.1007/s11511-012-0088-0. ISSN 0001-5962. S2CID 10138438.
  18. Ohshika, Ken'ichi (2011). "Realising end invariants by limits of minimally parabolic, geometrically finite groups". Geometry and Topology. 15 (2): 827–890. arXiv:math/0504546. doi:10.2140/gt.2011.15.827. ISSN 1364-0380. S2CID 14463721. Archived from the original on May 25, 2014. Retrieved March 24, 2022.
  19. Donaldson, Simon K.; Sullivan, Dennis (1989). "Quasiconformal 4-manifolds". Acta Mathematica. 163: 181–252. doi:10.1007/BF02392736. Zbl 0704.57008.
  20. Connes, Alain; Sullivan, Dennis; Teleman, Nicolae (1994). "Quasiconformal mappings, operators on Hilbert space and local formulae for characteristic classes". Topology. 33 (4): 663–681. doi:10.1016/0040-9383(94)90003-5. Zbl 0840.57013.
  21. Rodin, Burton; Sullivan, Dennis (1987), "The convergence of circle packings to the Riemann mapping", Journal of Differential Geometry, 26 (2): 349–360, doi:10.4310/jdg/1214441375, archived from the original on October 27, 2020, retrieved March 23, 2022
  22. Chas, Moira; Sullivan, Dennis (1999). "String Topology". arXiv:math/9911159v1.
  23. Cohen, Ralph Louis; Jones, John D. S.; Yan, Jun (2004). "The loop homology algebra of spheres and projective spaces". In Arone, Gregory; Hubbuck, John; Levi, Ran; Weiss, Michael (eds.). Categorical decomposition techniques in algebraic topology: International Conference in Algebraic Topology, Isle of Skye, Scotland, June 2001. Birkhäuser. pp. 77–92.
  24. Tamanoi, Hirotaka (2010). "Loop coproducts in string topology and triviality of higher genus TQFT operations". Journal of Pure and Applied Algebra. 214 (5): 605–615. arXiv:0706.1276. doi:10.1016/j.jpaa.2009.07.011. MR 2577666. S2CID 2147096.
  25. Parry, Bill; Sullivan, Dennis (1975). "A topological invariant of flows on 1-dimensional spaces". Topology. 14 (4): 297–299. doi:10.1016/0040-9383(75)90012-9.
  26. Sullivan, Michael C. (1997). "An invariant of basic sets of Smale flows". Ergodic Theory and Dynamical Systems. 17 (6): 1437–1448. doi:10.1017/S0143385797097617. S2CID 96462227.
  27. "Oswald Veblen Prize in Geometry". Archived from the original on January 5, 2020. Retrieved August 17, 2020.
  28. "National Academy of Sciences". Archived from the original on May 15, 2021. Retrieved August 17, 2020.
  29. "American Academy of Arts and Sciences". Archived from the original on March 24, 2022. Retrieved August 17, 2020.
  30. "Wolf Prize Winners Announced". Israel National News. Archived from the original on March 24, 2022. Retrieved March 23, 2022.
  31. List of Fellows of the American Mathematical Society Archived December 5, 2012, at archive.today, retrieved August 5, 2013.
  32. Kehoe, Elaine (January 2015). "Sullivan Awarded Balzan Prize". Notices of the American Mathematical Society. 62 (1): 54–55. doi:10.1090/noti1198.
  33. "2022: Dennis Parnell Sullivan | The Abel Prize". abelprize.no. Archived from the original on March 23, 2022. Retrieved March 23, 2022.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.