Restoration ecology

Restoration ecology is the scientific study supporting the practice of ecological restoration, which is the practice of renewing and restoring degraded, damaged, or destroyed ecosystems and habitats in the environment by active human interruption and action. Ecological restoration can reverse biodiversity loss, combat climate change and support local and global economies.[1]

Recently constructed wetland regeneration in Australia, on a site previously used for agriculture
Rehabilitation of a portion of Johnson Creek, to restore bioswale and flood control functions of the land which had long been converted to pasture for cow grazing. The horizontal logs can float, but are anchored by the posts. Just-planted trees will eventually stabilize the soil. The fallen trees with roots jutting into the stream are intended to enhance wildlife habitat. The meandering of the stream is enhanced here by a factor of about three times, perhaps to its original course.
Sankey diagram for the evolution of keywords used in publications about ecological restoration in Canada over time.

Natural ecosystems provide ecosystem services in the form of resources such as food, fuel, and timber; the purification of air and water; the detoxification and decomposition of wastes; the regulation of climate; the regeneration of soil fertility; and the pollination of crops. These ecosystem processes have been estimated to be worth trillions of dollars annually.[2][3] There is consensus in the scientific community that the current environmental degradation and destruction of many of Earth's biota are taking place on a "catastrophically short timescale".[4] Scientists estimate that the current species extinction rate, or the rate of the Holocene extinction, is 1,000 to 10,000 times higher than the normal, background rate.[5][6][7] Habitat loss is the leading cause of both species extinctions[7] and ecosystem service decline.[2]

Two methods have been identified to slow the rate of species extinction and ecosystem service decline, they are the conservation of currently viable habitat and the restoration of degraded habitat. The commercial applications of ecological restoration have increased exponentially in recent years.[8] In 2019, the United Nations General Assembly declared 2021–2030 the UN Decade on Ecosystem Restoration.[9]

Effective restoration requires an explicit goal or policy, preferably an unambiguous one that is articulated, accepted, and codified. Restoration goals reflect societal choices from among competing policy priorities, but extracting such goals is typically contentious and politically challenging.[10]

Definition

Restoration ecology is the academic study of the process, whereas ecological restoration is the actual project or process by restoration practitioners. The Society for Ecological Restoration defines "ecological restoration" as an "intentional activity that initiates or accelerates the recovery of an ecosystem with respect to its health, integrity and sustainability".[11] Ecological restoration includes a wide scope of projects including erosion control, reforestation, removal of non-native species and weeds, revegetation of disturbed areas, daylighting streams, the reintroduction of native species (preferably native species that have local adaptation), and habitat and range improvement for targeted species. For many researchers, the ecological restoration must include the local communities and stakeholders: they call this process the "social-ecological restoration".[12]

E. O. Wilson, a biologist, wrote in 1992, "Here is the means to end the great extinction spasm. The next century will, I believe, be the era of restoration in ecology."[13]

Rationale

There are many reasons to restore ecosystems. Some include:[14]

  • Restoring natural capital such as drinkable water or wildlife populations
  • Helping human communities and the ecosystems upon which they depend adapt to the impacts of climate change (through ecosystem-based adaptation)
  • Mitigating climate change (e.g. through carbon sequestration)[15]
  • Helping threatened or endangered species[16]
  • Aesthetic reasons [17]
  • Moral reasons: human intervention has unnaturally destroyed many habitats, and there exists an innate obligation to restore these destroyed habitats
  • Regulated use/harvest, particularly for subsistence[18]
  • Cultural relevance of native ecosystems to Native people[18][19]
  • The environmental health of nearby populations [20]
Buffelsdraai Community Reforestation Project.
Forest restoration in action at the Buffelsdraai Landfill Site Community Reforestation Project in South Africa

There exist considerable differences of opinion on how to set restoration goals and how to define their success. Ultimately specifying the restoration target or desired state of an ecosystem is a societal choice, informed by scientists and technocrats, but ultimately it is a policy choice. Selecting the desired goal can be politically contentious.[21] Some urge active restoration (e.g. eradicating invasive animals to allow the native ones to survive) and others who believe that protected areas should have the bare minimum of human interference, such as rewilding. Ecosystem restoration has generated controversy. Skeptics doubt that the benefits justify the economic investment or who point to failed restoration projects and question the feasibility of restoration altogether. It can be difficult to set restoration goals, in part because, as Anthony Bradshaw claims, "ecosystems are not static, but in a state of dynamic equilibrium…. [with restoration] we aim [for a] moving target."

Some conservationists argue that, though an ecosystem may not be returned to its original state, the functions of the ecosystem (especially ones that provide services to us) may be more valuable in its current configuration (Bradshaw 1987). This is especially true in cases where the ecosystem services are central to the physical and cultural survival of human populations, as is the case with many Native groups in the United States and other communities around the world who subsist using ecological services and environmental resources.[18] One reason to consider ecosystem restoration is to mitigate climate change through activities such as afforestation. Afforestation involves replanting forests, which remove carbon dioxide from the air. Carbon dioxide is a leading cause of global warming (Speth, 2005) and capturing it would help alleviate climate change. Another example of a common driver of restoration projects in the United States is the legal framework of the Clean Water Act, which often requires mitigation for damage inflicted on aquatic systems by development or other activities.[22]

Theoretical foundations

Restoration ecology draws on a wide range of ecological concepts.

Disturbance

Disturbance is a change in environmental conditions that disrupt the functioning of an ecosystem. Disturbance can occur at a variety of spatial and temporal scales, and is a natural component of many communities.[23] For example, many forest and grassland restorations implement fire as a natural disturbance regime. However the severity and scope of anthropogenic impact has grown in the last few centuries. Differentiating between human-caused and naturally occurring disturbances is important if we are to understand how to restore natural processes and minimize anthropogenic impacts on the ecosystems.

Succession

Ecological succession is the process by which a community changes over time, especially following a disturbance. In many instances, an ecosystem will change from a simple level of organization with a few dominant pioneer species to an increasingly complex community with many interdependent species. Restoration often consists of initiating, assisting, or accelerating ecological successional processes, depending on the severity of the disturbance.[24] Following mild to moderate natural and anthropogenic disturbances, restoration in these systems involves hastening natural successional trajectories through careful management. However, in a system that has experienced a more severe disturbance (such as in urban ecosystems), restoration may require intensive efforts to recreate environmental conditions that favor natural successional processes.[25]

Fragmentation

Habitat fragmentation describes spatial discontinuities in a biological system, where ecosystems are broken up into smaller parts through land-use changes (e.g. agriculture) and natural disturbance. This both reduces the size of the population and increases the degree of isolation. These smaller and isolated populations are more vulnerable to extinction. Fragmenting ecosystems decreases the quality of the habitat. The edge of a fragment has a different range of environmental conditions and therefore supports different species than the interior. Restorative projects can increase the effective size of a population by adding suitable habitat and decrease isolation by creating habitat corridors that link isolated fragments. Reversing the effects of fragmentation is an important component of restoration ecology.[26][27][28] The composition of the surrounding landscape can also influence the effectiveness of restoration projects. For example, a restoration site that is closer to remaining vegetation will be more likely to be naturally regenerated through seed disperal than a site that is further away.[29]

Ecosystem function

Ecosystem function describes the most basic and essential foundational processes of any natural systems, including nutrient cycles and energy fluxes. An understanding of the complexity of these ecosystem functions is necessary to address any ecological processes that may be degraded. Ecosystem functions are emergent properties of the system as a whole, thus monitoring and management are crucial for the long-term stability of ecosystems. A completely self-perpetuating and fully functional ecosystem is the ultimate goal of restorative efforts. We must understand what ecosystem properties influence others to restore desired functions and reach this goal.[30]

Community assembly

Community assembly "is a framework that can unify virtually all of (community) ecology under a single conceptual umbrella".[31] Community assembly theory attempts to explain the existence of environmentally similar sites with differing assemblages of species. It assumes that species have similar niche requirements, so that community formation is a product of random fluctuations from a common species pool.[32] Essentially, if all species are fairly ecologically equivalent, then random variation in colonization, and migration and extinction rates between species, drive differences in species composition between sites with comparable environmental conditions.[33]

Population genetics

Genetic diversity has shown to be as important as species diversity for restoring ecosystem processes.[34] Hence ecological restorations are increasingly factoring genetic processes into management practices. Population genetic processes that are important to consider in restored populations include founder effects, inbreeding depression, outbreeding depression, genetic drift, and gene flow. Such processes can predict whether or not a species successfully establishes at a restoration site.[35][36]

Applications

Leaf litter accumulation

Leaf litter accumulation plays an important role in the restoration process. Higher quantities of leaf litter hold higher humidity levels, a key factor for the establishment of plants. The process of accumulation depends on factors like wind and species composition of the forest. The leaf litter found in primary forests is more abundant, deeper, and holds more humidity than in secondary forests. These technical considerations are important to take into account when planning a restoration project.[37]

Soil heterogeneity effects on community heterogeneity

Spatial heterogeneity of resources can influence plant community composition, diversity, and assembly trajectory. Baer et al. (2005) manipulated soil resource heterogeneity in a tallgrass prairie restoration project. They found increasing resource heterogeneity, which on its own was insufficient to ensure species diversity in situations where one species may dominate across the range of resource levels. Their findings were consistent with the theory regarding the role of ecological filters on community assembly. The establishment of a single species, best adapted to the physical and biological conditions can play an inordinately important role in determining the community structure.[38]

Invasion and restoration

Restoration is used as a tool for reducing the spread of invasive plant species many ways. The first method views restoration primarily as a means to reduce the presence of invasive species and limit their spread. As this approach emphasizes the control of invaders, the restoration techniques can differ from typical restoration projects.[39][40] The goal of such projects is not necessarily to restore an entire ecosystem or habitat.[41] These projects frequently use lower diversity mixes of aggressive native species seeded at high density.[42] They are not always actively managed following seeding.[43] The target areas for this type of restoration are those which are heavily dominated by invasive species. The goals are to first remove the species and then in so doing, reduce the number of invasive seeds being spread to surrounding areas. An example of this is through the use of biological control agents (such as herbivorous insects) which suppress invasive weed species while restoration practitioners concurrently seed in native plant species that take advantage of the freed resources.[44] These approaches have been shown to be effective in reducing weeds, although it is not always a sustainable solution long term without additional weed control, such as mowing, or re-seeding.[40][43][45][46]

Restoration projects are also used as a way to better understand what makes an ecological community resistant to invasion. As restoration projects have a broad range of implementation strategies and methods used to control invasive species, they can be used by ecologists to test theories about invasion.[43] Restoration projects have been used to understand how the diversity of the species introduced in the restoration affects invasion. We know that generally higher diversity prairies have lower levels of invasion.[47] The incorporation of functional ecology has shown that more functionally diverse restorations have lower levels of invasion.[48] Furthermore, studies have shown that using native species functionally similar to invasive species are better able to compete with invasive species.[49][50] Restoration ecologists have also used a variety of strategies employed at different restoration sites to better understand the most successful management techniques to control invasion.[51] To develop restoration ecology into a full science and to improve its practice requires generalizations about the processes governing the development of restored communities. While new experiments can be designed , one way forward is to use data from existing restoration studies to relate plant species performance to their ecological trait.[52]

Successional trajectories

Progress along a desired successional pathway may be difficult if multiple stable states exist. Looking over 40 years of wetland restoration data, Klötzli and Gootjans (2001) argue that unexpected and undesired vegetation assemblies "may indicate that environmental conditions are not suitable for target communities".[53] Succession may move in unpredicted directions, but constricting environmental conditions within a narrow range may rein in the possible successional trajectories and increase the likelihood of the desired outcome.[54][55]

Sourcing land for restoration

A study quantified climate change mitigation potentials of 'high-income' nations shifting diets – away from meat-consumption – and restoration of the spared land. They find that the hypothetical dietary change "could reduce annual agricultural production emissions of high-income nations' diets by 61% while sequestering as much as 98.3 (55.6–143.7) GtCO2 equivalent, equal to approximately 14 years of current global agricultural emissions until natural vegetation matures", outcomes they call 'double climate dividend'.[56][57]

Sourcing material for restoration

For most restoration projects it is generally recommended to source material from local populations, to increase the chance of restoration success and minimize the effects of maladaptation.[58] However the definition of local can vary based on species. habitat and region.[59] US Forest Service recently developed provisional seed zones based on a combination of minimum winter temperature zones, aridity, and the Level III ecoregions.[60] Rather than putting strict distance recommendations, other guidelines recommend sourcing seeds to match similar environmental conditions that the species is exposed to, either now, or under projected climate change. For example, sourcing for Castilleja levisecta found that farther source populations that matched similar environmental variables were better suited for the restoration project than closer source populations.[61] Similarly, a suite of new methods are surveying gene-environment interactions in order to identify the optimum source populations based on genetic adaptation to environmental conditions.[62][63]

Challenges

Some view ecosystem restoration as impractical, partially because restorations often fall short of their goals. Hilderbrand et al. point out that many times uncertainty (about ecosystem functions, species relationships, and such) is not addressed, and that the time-scales set out for 'complete' restoration are unreasonably short, while other critical markers for full-scale restoration are either ignored or abridged due to feasibility concerns.[64] In other instances an ecosystem may be so degraded that abandonment (allowing a severely degraded ecosystem to recover on its own) may be the wisest option.[65] Local communities sometimes object to restorations that include the introduction of large predators or plants that require disturbance regimes such as regular fires, citing threat to human habitation in the area.[66] High economic costs can also be perceived as a negative impact of the restoration process.

Ecosystem restoration for the superb parrot on an abandoned railway line in Australia

Public opinion is very important in the feasibility of a restoration; if the public believes that the costs of restoration outweigh the benefits they will not support it.[66]

Many failures have occurred in past restoration projects, many times because clear goals were not set out as the aim of the restoration, or an incomplete understanding of the underlying ecological framework lead to insufficient measures. This may be because, as Peter Alpert says, "people may not [always] know how to manage natural systems effectively".[67] Furthermore, many assumptions are made about myths of restoration such as carbon copy, where a restoration plan, which worked in one area, is applied to another with the same results expected, but not realized.[64]

Science–practice gap

Restored prairie at the West Eugene Wetlands in Eugene, Oregon

One of the struggles for both fields is a divide between restoration ecology and ecological restoration in practice. Many restoration practitioners as well as scientists feel that science is not being adequately incorporated into ecological restoration projects.[68][69][70][71] In a 2009 survey of practitioners and scientists, the "science-practice gap" was listed as the second most commonly cited reason limiting the growth of both science and practice of restoration.[69]

There are a variety of theories about the cause of this gap. However, it has been well established that one of the main issues is that the questions studied by restoration ecologists are frequently not found useful or easily applicable by land managers.[68][72] For instance, many publications in restoration ecology characterize the scope of a problem in-depth, without providing concrete solutions.[72] Additionally many restoration ecology studies are carried out under controlled conditions and frequently at scales much smaller than actual restorations.[43] Whether or not these patterns hold true in an applied context is often unknown. There is evidence that these small-scale experiments inflate type II error rates and differ from ecological patterns in actual restorations.[73][74] One approach to addressing this gap has been the development of International Principles & Standards for the Practice of Ecological Restoration by the Society for Ecological restoration (see below) – however this approach is contended, with scientists active in the field suggesting that this is restrictive, and instead principles and guidelines offer flexibility.[75]

There is further complication in that restoration ecologists who want to collect large-scale data on restoration projects can face enormous hurdles in obtaining the data. Managers vary in how much data they collect, and how many records they keep. Some agencies keep only a handful of physical copies of data that make it difficult for the researcher to access.[76] Many restoration projects are limited by time and money, so data collection and record-keeping are not always feasible.[69] However, this limits the ability of scientists to analyze restoration projects and give recommendations based on empirical data.

Food security and nature degradation

A range of activities in the name of "nature restoration", such as monoculture tree plantations, "degrade nature—destroying biodiversity, increasing pollution, and removing land from food production".[77]

Consideration as a substitute for steep emission reductions

Climate benefits from nature restoration are "dwarfed by the scale of ongoing fossil fuel emissions".[78][77] It risks "over-relying on land for mitigation at the expense of phasing out fossil fuels". Despite these issues, nature restoration is receiving increasing attention, with a study concluding that "Land restoration is an important option for tackling climate change but cannot compensate for delays in reducing fossil fuel emissions" as it's "unlikely to be done quickly enough to notably reduce the global peak temperatures expected in the next few decades".[77]

For instance, researchers have compared reforestation and prevention of (mainly tropical) deforestation in specific:

Researchers have found that, in terms of environmental services, it is better to avoid deforestation than to allow for deforestation to subsequently reforest, as the former leads to irreversible effects in terms of biodiversity loss and soil degradation.[79] Furthermore, the probability that legacy carbon will be released from soil is higher in younger boreal forest.[80] Global greenhouse gas emissions caused by damage to tropical rainforests may have been substantially underestimated until around 2019.[81] Additionally, the effects of af- or reforestation will be farther in the future than keeping existing forests intact.[82] It takes much longer − several decades − for the benefits for global warming to manifest to the same carbon sequestration benefits from mature trees in tropical forests and hence from limiting deforestation.[83] Therefore, scientists consider "the protection and recovery of carbon-rich and long-lived ecosystems, especially natural forests" to be "the major climate solution".[84]

Contrasting restoration ecology and conservation biology

Restoration ecology may be viewed as a sub-discipline of conservation biology, the scientific study of how to protect and restore biodiversity. Ecological restoration is then a part of the resulting conservation movement.

Both restoration ecologists and conservation biologists agree that protecting and restoring habitat is important for protecting biodiversity. However, conservation biology is primarily rooted in population biology. Because of that, it is generally organized at the population genetic level and assesses specific species populations (i.e. endangered species). Restoration ecology is organized at the community level, which focuses on broader groups within ecosystems.[85]

In addition, conservation biology often concentrates on vertebrate and invertebrate animals because of their salience and popularity, whereas restoration ecology concentrates on plants. Restoration ecology focuses on plants because restoration projects typically begin by establishing plant communities. Ecological restoration, despite being focused on plants, may also have "umbrella species" for individual ecosystems and restoration projects.[85] For example, the Monarch butterfly is an umbrella species for conserving and restoring milkweed plant habitat, because Monarch butterflies require milkweed plants to reproduce. Finally, restoration ecology has a stronger focus on soils, soil structure, fungi, and microorganisms because soils provide the foundation of functional terrestrial ecosystems.[86][87]

International Principles & Standards for the Practice of Ecological Restoration

The Society for Ecological Restoration (SER) released the second edition of the International Standards for the Practice of Ecological Restoration on September 27, 2019, in Cape Town, South Africa, at SER's 8th World Conference on Ecological Restoration.[88]  The publication provides updated and expanded guidance on the practice of ecological restoration, clarifies the breadth of ecological restoration and allied environmental repair activities, and includes ideas and input from a diverse international group of restoration scientists and practitioners.

The second edition builds on the first edition of the Standards, which was released December 12, 2016, at the Convention on Biological Diversity's 13th Conference of the Parties in Cancun, Mexico. The development of these Standards has been broadly consultative. The first edition was circulated to dozens of practitioners and experts for feedback and review. After release of the first edition, SER held workshops and listening sessions, sought feedback from key international partners and stakeholders, opened a survey to members, affiliates and supporters, and considered and responded to published critiques.

The International Principles and Standards for the Practice of Ecological Restoration:

  • Present a robust framework to guide restoration projects toward achieving intended goals.
  • Address restoration challenges including: effective design and implementation, accounting for complex ecosystem dynamics (especially in the context of climate change), and navigating trade-offs associated with land management priorities and decisions.
  • Highlight the role of ecological restoration in connecting social, community, productivity, and sustainability goals.
  • Recommend performance measures for restorative activities for industries, communities, and governments to consider.
  • Enhance the list of practices and actions that guide practitioners in planning, implementation, and monitoring activities, including: appropriate approaches to site assessment and identification of reference ecosystems, different restoration approaches including natural regeneration, and the role of ecological restoration in global restoration initiatives.
  • Include an expanded glossary of restoration terminology.
  • Provide a technical appendix on sourcing of seeds and other propagules for restoration.

History

Indigenous peoples, land managers, stewards, and laypeople have been practicing ecological restoration or ecological management for thousands of years.[89] Restoration ecology emerged as a separate field in ecology in the late twentieth century. The term was coined by John Aber and William Jordan III when they were at the University of Wisconsin–Madison.[90]

US

Considered the birthplace of modern ecological restoration, the first tallgrass prairie restoration was the 1936 Curtis Prairie at the University of Wisconsin–Madison Arboretum.[91][90] Civilian Conservation Corps workers replanted nearby prairie species onto a former horse pasture, overseen by university faculty including renowned ecologist Aldo Leopold, botanist Theodore Sperry, mycologist Henry C. Greene, and plant ecologist John T. Curtis. Curtis and his graduate students surveyed the whole of Wisconsin, documenting native species communities and creating the first species lists for tallgrass restorations.[92] The UW Arboretum was the center of tallgrass prairie research through the first half of the 20th century, with the development of the nearby Greene Prairie, Aldo Leopold Shack and Farm, and pioneering techniques like prescribed burning.[91]

The latter half of the 20th century saw the growth of ecological restoration beyond Wisconsin borders. The 285-hectare Green Oaks Biological Field Station at Knox College began in 1955 under the guidance of zoologist Paul Shepard. It was followed by the 40-hectare Schulenberg Prairie at the Morton Arboretum, which started in 1962 by Ray Schulenberg and Robert Betz. Betz then worked with The Nature Conservancy to establish the 260-hectare Fermi National Laboratory tallgrass prairie in 1974.[93] These major tallgrass restoration projects marked the growth of ecological restoration from isolated studies to widespread practice.

Australia

Australia has been the site of historically significant ecological restoration projects, commencing in the 1930s. These projects were responses to the extensive environmental damage inflicted by colonising settlers, following the forced dispossession of the First Nations communities of Australia. The substantial Traditional Ecological Knowledge of First Nations communities was not utilised in the historical restoration projects.

Many of the first Australian settler restoration projects were initiated by volunteers, often in the form of community groups. Many of these volunteers appreciated and utilised science resources, such as botanical and ecological knowledge. Local and state government agencies participated, and also industry. Australian scientists came to play an increasingly important role. A prominent scientist who took an interest in the reversal of vegetation degradation was botanist and plant ecologist Professor T G Osborn, University of Adelaide, who, in the 1920s, conducted pioneering research into the causes of arid-zone indigenous vegetation degradation. From this time, Australian botanists, plant ecologists and soil erosion researchers have increasingly developed interests in the recovery of ecological functioning on degraded sites.

The earliest known attempt by Australian settlers to restore a degraded natural ecosystem commenced in 1896, at Nairm (as it is known to people of the Kulin nation), or Port Phillip Bay, Melbourne.[94] Local government and community groups replanted degraded areas of the foreshore reserves with the indigenous plant species, Coastal Teatree (Leptospermum laevigatum).[94] The projects were motivated by utilitarian considerations: to conserve recreation sites, and promote tourism. However, some local residents, including Australian journalist, nature writer and amateur ornithologist, Donald Macdonald, were distressed at the loss of valued biological qualities, and campaigned to fully restore the Teatree ecosystems and conserve them and their indigenous fauna.[94]

The degraded arid-zone regions of Australia were the site of historical ecological restoration projects. Pastoral industry established in the arid-zone regions of South Australia and New South Wales resulted in the substantial degredation of these areas by ca.1900 resulting in severe wind erosion. From approximately 1930, Australian pastoralists implemented revegetation projects aiming to the substantial to full restoration of indigenous flora to degraded, wind eroded areas.[95]

At his arid-zone Koonamore research station in South Australia, established in 1925, Professor T G Osborn studied the loss of indigenous vegetation caused by overstocking and the resultant wind erosion and degradation, concluding that restoration of the indigenous saltbushes (Atriplex spp.), bluebushes (Maireana spp.) and Mulga (Acacia aneura) vegetation communities was possible, if a stock exclosure and natural regeneration revegetation technique was applied to degraded paddocks.[96] Most likely influenced by Osborn's research, throughout the 1930s South Australian pastoralists adopted this revegetation technique. For example, at Wirraminna station (or property, ranch), following fencing to exclude stock, severe soil-drifts were fully revegetated and stabilised through natural regeneration of the indigenous vegetation. It was also found that furrowing (or ploughing) of eroded areas resulted in the natural regeneration of indigenous vegetation. So successful were these programs that the South Australian government adopted them as approved state soil conservation policies in 1936. Legislation introduced in 1939 codified these policies.[97]

In 1936 mining assayer Albert Morris and his restoration colleagues initiated the Broken Hill regeneration area project. This project involved the natural regeneration of indigenous flora on a severely wind eroded site of hundreds of hectares, located in arid western New South Wales.[98] Local and state governments, and the Broken Hill mining industry, supported and funded the project.[99] In fact, as the regeneration area project was so well adapted to the harsh arid-zone conditions, the New South Wales state government adopted it as a model for the proposed restoration of the twenty million hectares of the arid western portion of the state that had been reduced to a severely eroded condition. Legislation to this effect was passed in 1949.[100]

Another significant early Australian settler ecological restoration project occurred on the north coast of New South Wales. From approximately 1840 settlers forcibly occupied the coastal hinterlands, dispossessed First Nations communities, destroyed extensive areas of biologically diverse rainforest and converted the land to farms. Only small patches of rainforest survived. In 1935 dairy farmer Ambrose Crawford beganrestoring a degraded four acres (1.7 hectares) patch of local rainforest, or "Big Scrub" (Lowland Tropical Rainforest), as it was referred to, at Lumley Park reserve, Alstonville.[101] His main restoration techniques were clearing weeds that were smothering the rainforest plants and planting of suitable indigenous rainforest species. Crawford utilised professional government botanists as advisors, and received support from his local government council. The restored rainforest reserve still exists today.

Natural Capital Committee's recommendation for a 25-year plan

The UK Natural Capital Committee (NCC) made a recommendation in its second State of Natural Capital report published in March 2014 that in order to meet the Government's goal of being the first generation to leave the environment in a better state than it was inherited, a long-term 25-year plan was needed to maintain and improve England's natural capital.

The Secretary of State for the UK's Department for Environment, Food and Rural Affairs, Owen Paterson, described his ambition for the natural environment and how the work of the Committee fits into this at an NCC event in November 2012: "I do not, however, just want to maintain our natural assets; I want to improve them. I want us to derive the greatest possible benefit from them, while ensuring that they are available for generations to come. This is what the NCC's innovative work is geared towards".[102]

Traditional ecological knowledge

Traditional ecological knowledge (TEK) from Indigenous Peoples demonstrates how restoration ecology is a historical field, lived out by humans for thousands of years.[103] Indigenous people have acquired ecological knowledge through observation, experience, and management of the natural resources and the environment around them. In the past, they managed their environment and changed the structure of the vegetation to not only meet their basic needs (food, water, shelter, medicines) but also to improve desired characteristics and even increasing the populations and biodiversity. In that way, they achieved a close relationship with the environment and learned lessons that indigenous people keep in their culture.[89]

This means there is much that could be learned from local people indigenous to the ecosystem being restored[104] because of the deep connection and biocultural and linguistic diversity of place.[105] The use of natural resources by indigenous people considers many cultural, social, and environmental aspects, since they have always had an intimate connection with the animals and plants around them over centuries since they obtained their livelihood from the environment around them.[106]

Restoration ecologists must consider that TEK is place dependent due to intimate connection[107] and thus when engaging Indigenous Peoples to include knowledge for restoration purposes, respect and care must be taken to avoid appropriation of the TEK.[108] Successful ecological restoration which includes Indigenous Peoples must be led by Indigenous Peoples[108] to ensure non-indigenous people acknowledge the unequal relationship of power.[109]

For example, the California Indians have a rigid and complex harvesting, management and production practice, largely typical horticultural techniques and concentrated forest burning. The California Indians had a rich knowledge of ecology and natural techniques to understand burn patterns, plant material, cultivation, pruning, digging; what was edible vs. what was not. This knowledge extends into wildlife management – how abundant, where the distribution was, and how diverse the large mammal population was.[110] While the United States has counteracted the degredation, fragmentation and loss of habitat through land set aside from all human influence, indigenous practices could inform ecosystem restoration and wildlife management.[110]

See also

References

Notes

  1. UNEP-WCMC (April 30, 2020). "10 years to boost ecosystem restoration for people and planet". UNEP-WCMC. Retrieved July 12, 2023.
  2. Daily, Gretchen C. (1997). "Ecosystem Services: Benefits Supplied to Human Societies by Natural Ecosystems" (PDF). Issues in Ecology.
  3. Costanza, Robert; d'Arge, Ralph; de Groot, Rudolf; Farber, Stephen; Grasso, Monica; Hannon, Bruce; Limburg, Karin; Naeem, Shahid; O'Neill, Robert V. (May 1997). "The value of the world's ecosystem services and natural capital". Nature. 387 (6630): 253–260. Bibcode:1997Natur.387..253C. doi:10.1038/387253a0. ISSN 0028-0836. S2CID 672256.
  4. Novacek, Michael J.; Cleland, Elsa E. (May 8, 2001). "The current biodiversity extinction event: Scenarios for mitigation and recovery". Proceedings of the National Academy of Sciences. 98 (10): 5466–5470. Bibcode:2001PNAS...98.5466N. doi:10.1073/pnas.091093698. PMC 33235. PMID 11344295.
  5. Pimm, Stuart L.; Russell, Gareth J.; Gittleman, John L.; Brooks, Thomas M. (July 21, 1995). "The Future of Biodiversity". Science. 269 (5222): 347–350. Bibcode:1995Sci...269..347P. doi:10.1126/science.269.5222.347. ISSN 0036-8075. PMID 17841251. S2CID 35154695.
  6. Simberloff, Daniel (January 1996). "Lawton, J. H. and May, R. M. (Eds.). Extinction Rates. 1995. Oxford University Press, Oxford. xii + 233 pp. Price: f17.95". Journal of Evolutionary Biology. 9 (1): 124–126. doi:10.1046/j.1420-9101.1996.t01-1-9010124.x. ISBN 0-19-854829-X. ISSN 1010-061X.
  7. Sciences, National Academy of (January 1, 1988). Biodiversity. doi:10.17226/989. ISBN 978-0-309-03739-6. PMID 25032475.
  8. Young, T. P.; Petersen, D. A.; Clary, J. J. (April 28, 2005). "The ecology of restoration: historical links, emerging issues and unexplored realms". Ecology Letters. 8 (6): 662–673. doi:10.1111/j.1461-0248.2005.00764.x. ISSN 1461-023X.
  9. "New UN Decade on Ecosystem Restoration offers unparalleled opportunity for job creation, food security and addressing climate change". March 2019.
  10. Lackey, Robert (2004). "Societal values and the proper role of restoration ecologists" (PDF). Frontiers in Ecology and the Environment. 22 (4): 45–46.
  11. "The SER International Primer on Ecological Restoration" (PDF). Society for Ecological Restoration International Science & Policy Working Group. 2004.
  12. Fernández‐Manjarrés, J.F., Roturier, S. and Bilhaut, A.‐G. (2018), The emergence of the social‐ecological restoration concept. Restor Ecol, 26: 404-410. doi:10.1111/rec.12685
  13. O., Wilson, Edward (2010). The diversity of life (1st Harvard University Press paperback ed.). Cambridge, Mass.: Belknap Press of Harvard University Press. ISBN 9780674058170. OCLC 691398594.{{cite book}}: CS1 maint: multiple names: authors list (link)
  14. Osborne, Tracey; Brock, Samara; Chazdon, Robin; Chomba, Susan; Garen, Eva; Gutierrez, Victoria; Lave, Rebecca; Lefevre, Manon; Sundberg, Juanita (2021). "The political ecology playbook for ecosystem restoration: Principles for effective, equitable, and transformative landscapes". Global Environmental Change. 70: 102320. doi:10.1016/j.gloenvcha.2021.102320.
  15. Strassburg, Bernardo B. N.; Iribarrem, Alvaro; Beyer, Hawthorne L.; Cordeiro, Carlos Leandro; Crouzeilles, Renato; Jakovac, Catarina C.; Braga Junqueira, André; Lacerda, Eduardo; Latawiec, Agnieszka E.; Balmford, Andrew; Brooks, Thomas M. (October 14, 2020). "Global priority areas for ecosystem restoration". Nature. 586 (7831): 724–729. Bibcode:2020Natur.586..724S. doi:10.1038/s41586-020-2784-9. hdl:11336/137992. ISSN 0028-0836. PMID 33057198. S2CID 222350130.
  16. Silva, S., Lowry, M., Macaya-Solis, C., Byatt, B., & Lucas, M. C. (2017). Can navigation locks be used to help migratory fishes with poor swimming performance pass tidal barrages? A test with lampreys. Ecological engineering, 102, 291-302
  17. Harris JA, Hobbs RJ, Higgs ES, Aronson JA (2006). "Ecological restoration and climate change". Restoration Ecology. 14 (2): 170–76. doi:10.1111/j.1526-100x.2006.00136.x. S2CID 17605839.
  18. Baldy, Cutcha Risling (December 2013). "Why we gather: traditional gathering in native Northwest California and the future of bio-cultural sovereignty". Ecological Processes. 2 (1). doi:10.1186/2192-1709-2-17. ISSN 2192-1709.
  19. SIMPSON, LEANNE BETASAMOSAKE (October 17, 2017). As We Have Always Done. University of Minnesota Press. doi:10.5749/j.ctt1pwt77c. ISBN 9781452956008.
  20. Wendelowski, Karyn I. (1995). "A Matter of Trust: Federal Environmental Responsibilities to Native Americans under Customary International Law". American Indian Law Review. 20 (2): 423–458. doi:10.2307/20068803. ISSN 0094-002X. JSTOR 20068803.
  21. Hobbs, Richard J. (2004). "Restoration ecology: the challenge of social values and expectations". Frontiers in Ecology and the Environment. 2: 43–48. doi:10.1890/1540-9295(2004)002[0043:RETCOS]2.0.CO;2.
  22. "Compensatory Mitigation Methods". United States Environmental Protection Agency. August 20, 2015. Retrieved June 4, 2018.
  23. "Chapter 17: Disturbance, Succession, and Community Assembly in Terrestrial Plant Communities". Assembly rules and restoration ecology : bridging the gap between theory and practice. Temperton, Vicky M. Washington, D.C.: Island Press. 2004. ISBN 9781429495134. OCLC 173134455.{{cite book}}: CS1 maint: others (link)
  24. Luken, James O. (1990). Directing ecological succession (1st ed.). London: Chapman and Hall. ISBN 978-0412344503. OCLC 21376331.
  25. Wallace, K. J.; Laughlin, Daniel C.; Clarkson, Bruce D. (2017). "Exotic weeds and fluctuating microclimate can constrain native plant regeneration in urban forest restoration". Ecological Applications. 27 (4): 1268–1279. doi:10.1002/eap.1520. hdl:10289/12974. PMID 28182314.
  26. Newmark, William D.; Jenkins, Clinton N.; Pimm, Stuart L.; McNeally, Phoebe B.; Halley, John M. (2017). "Targeted habitat restoration can reduced extinction rates in fragrmented forests". Proceedings of the National Academy of Sciences. 114 (36): 9635–9640. Bibcode:2017PNAS..114.9635N. doi:10.1073/pnas.1705834114. PMC 5594666. PMID 28827340.
  27. Goosem, Stephen; Tucker, Nigel; Wet Tropics Management Authority, (issuing body.) (2013), Repairing the rainforest (2 ed.), Wet Tropics Management Authority ; [Tarzali, Queensland] : Biotropica Australia, pp. 57–85, ISBN 978-1-921591-66-2
  28. Tracey, J. G. (John Geoffrey), 1920-2004; Australian National University. Centre for Resource and Environmental Studies (1986), Trees on the Atherton Tableland : remnants, regrowth and opportunities for planting, Australian National University, Centre for Resource and Environmental Studies, ISBN 978-0-86740-253-7{{citation}}: CS1 maint: multiple names: authors list (link)
  29. Gilby, Ben L; Olds, Andrew D; Connolly, Rod M; Henderson, Christopher J; Schlacher, Thomas A (December 1, 2018). "Spatial Restoration Ecology: Placing Restoration in a Landscape Context". BioScience. 68 (12): 1007–1019. doi:10.1093/biosci/biy126. hdl:10072/382942. ISSN 0006-3568.
  30. Wallace, K. J.; Laughlin, Daniel C.; Clarkson, Bruce D.; Schipper, Louis A. (2018). "Forest canopy restoration has indirect effects on litter decomposition and no effect on denitrification". Ecosphere. 9 (12): e02534. doi:10.1002/ecs2.2534.
  31. Douglas, Ian (October 30, 2014). Urban ecology : an introduction. James, Philip (Professor of ecology). New York, NY. ISBN 9781136266966. OCLC 894509632.{{cite book}}: CS1 maint: location missing publisher (link)
  32. Young, Truman P.; Chase, Jonathan M.; Huddleston, Russell T. (2001). "Community Succession and Assembly: Comparing, Contrasting and Combining Paradigms in the Context of Ecological Restoration". Ecological Restoration. 19 (1): 5–18. doi:10.3368/er.19.1.5. JSTOR 43440887. S2CID 87540012.
  33. Douglas, Ian; James, Philip (October 30, 2014). Urban Ecology: An Introduction. Routledge. p. 314. ISBN 978-1-136-26696-6.
  34. Hughes, A. Randall; Inouye, Brian D.; Johnson, Marc T. J.; Underwood, Nora; Vellend, Mark (April 8, 2008). "Ecological consequences of genetic diversity". Ecology Letters. 11 (6): 609–623. doi:10.1111/j.1461-0248.2008.01179.x. ISSN 1461-023X. PMID 18400018.
  35. Montalvo, Arlee M.; Rice, Susan L. Williams; Buchmann, Stephen L.; Cory, Coleen; Handel, Steven N.; Nabhan, Gary P.; Robichaux, Robert H. (December 1997). "Restoration Biolog y: A Population Biolog y Perspective". Restoration Ecology. 5 (4): 277–290. doi:10.1046/j.1526-100x.1997.00542.x. ISSN 1061-2971. S2CID 56366398.
  36. Crutsinger, Gregory M.; Collins, Michael D.; Fordyce, James A.; Gompert, Zachariah; Nice, Chris C.; Sanders, Nathan J. (August 18, 2006). "Plant Genotypic Diversity Predicts Community Structure and Governs an Ecosystem Process". Science. 313 (5789): 966–968. Bibcode:2006Sci...313..966C. doi:10.1126/science.1128326. ISSN 0036-8075. PMID 16917062. S2CID 12968062.
  37. Barrientos, Zaidett (2012). "Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica" (PDF). Revista de Biología Tropical. 60 (3): 1041–1053. doi:10.15517/rbt.v60i3.1756. PMID 23025078.
  38. Baer, Sara G.; Collins, Scott L; Blair, John M.; Knapp, Alan K.; Fiedler, Anna K. (2005). "Soil Heterogeneity Effects on Tallgrass Prairie Community Heterogeneity: An Application of Ecological Theory to Restoration Ecology". Restoration Ecology. 13 (2): 413–424. doi:10.1111/j.1526-100x.2005.00051.x. ISSN 1061-2971. S2CID 55420256.
  39. Epanchin-Niell, Rebecca; Englin, Jeffrey; Nalle, Darek (November 2009). "Investing in rangeland restoration in the Arid West, USA: Countering the effects of an invasive weed on the long-term fire cycle". Journal of Environmental Management. 91 (2): 370–379. doi:10.1016/j.jenvman.2009.09.004. PMID 19781845.
  40. Török, Péter; Miglécz, Tamás; Valkó, Orsolya; Kelemen, András; Deák, Balázs; Lengyel, Szabolcs; Tóthmérész, Béla (January 2012). "Recovery of native grass biodiversity by sowing on former croplands: Is weed suppression a feasible goal for grassland restoration?". Journal for Nature Conservation. 20 (1): 41–48. Bibcode:2012JNatC..20...41T. doi:10.1016/j.jnc.2011.07.006.
  41. Brown, Ray; Amacher, Michael (1999). "Selecting Plant Species for Ecological Restoration: a Perspective for Land Managers" (PDF). USDA Forest Service Proceedings RMRS-P-8. Archived from the original (PDF) on May 5, 2017.
  42. Wilson, Rob G.; Orloff, Steve B.; Lancaster, Donald L.; Kirby, Donald W.; Carlson, Harry L. (2010). "Integrating Herbicide Use and Perennial Grass Revegetation to Suppress Weeds in Noncrop Areas". Invasive Plant Science and Management. 3 (1): 81–92. doi:10.1614/ipsm-09-008.1. ISSN 1939-7291. S2CID 86706900.
  43. Kettenring, Karin M.; Adams, Carrie Reinhardt (August 1, 2011). "Lessons learned from invasive plant control experiments: a systematic review and meta-analysis". Journal of Applied Ecology. 48 (4): 970–979. doi:10.1111/j.1365-2664.2011.01979.x. ISSN 1365-2664.
  44. Cutting, K. J.; Hough-Goldstein, J. (2013). "Integration of biological control and native seeding to restore invaded plant communities". Restoration Ecology. 21 (5): 648–655. doi:10.1111/j.1526-100X.2012.00936.x. S2CID 82148885.
  45. Dana, Blumenthal; Nicholas, Jordan; Elizabeth, Svenson (March 6, 2003). "Weed Control as a Rationale for Restoration: The Example of Tallgrass Prairie". Conservation Ecology. 7 (1). doi:10.5751/ES-00480-070106. hdl:10535/3228. ISSN 1195-5449.
  46. Blumenthal, Dana M.; Jordan, Nicholas R.; Svenson, Elizabeth L. (May 20, 2005). "Effects of prairie restoration on weed invasions". Agriculture, Ecosystems & Environment. 107 (2–3): 221–230. doi:10.1016/j.agee.2004.11.008.
  47. Montoya, Daniel; Rogers, Lucy; Memmott, Jane (December 1, 2012). "Emerging perspectives in the restoration of biodiversity-based ecosystem services". Trends in Ecology & Evolution. 27 (12): 666–672. doi:10.1016/j.tree.2012.07.004. PMID 22883537.
  48. Pokorny, Monica L.; Sheley, Roger L.; Zabinski, Catherine A.; Engel, Richard E.; Svejcar, Tony J.; Borkowski, John J. (September 1, 2005). "Plant Functional Group Diversity as a Mechanism for Invasion Resistance". Restoration Ecology. 13 (3): 448–459. doi:10.1111/j.1526-100X.2005.00056.x. ISSN 1526-100X. S2CID 53447999.
  49. Cleland, Elsa E.; Larios, Loralee; Suding, Katharine N. (May 1, 2013). "Strengthening Invasion Filters to Reassemble Native Plant Communities: Soil Resources and Phenological Overlap". Restoration Ecology. 21 (3): 390–398. doi:10.1111/j.1526-100x.2012.00896.x. ISSN 1526-100X. S2CID 85974542.
  50. Firn, Jennifer; MacDougall, Andrew S.; Schmidt, Susanne; Buckley, Yvonne M. (July 1, 2010). "Early emergence and resource availability can competitively favour natives over a functionally similar invader". Oecologia. 163 (3): 775–784. Bibcode:2010Oecol.163..775F. doi:10.1007/s00442-010-1583-7. ISSN 0029-8549. PMID 20179971. S2CID 22315364.
  51. Rowe, Helen I. (November 1, 2010). "Tricks of the Trade: Techniques and Opinions from 38 Experts in Tallgrass Prairie Restoration". Restoration Ecology. 18: 253–262. doi:10.1111/j.1526-100X.2010.00663.x. ISSN 1526-100X. S2CID 84240914.
  52. Pywell, Richard F.; Bullock, James M.; Roy, David B.; Warman, Liz; Walker, Kevin J.; Rothery, Peter (February 2003). "Plant traits as predictors of performance in ecological restoration: Plant traits as predictors of performance". Journal of Applied Ecology. 40 (1): 65–77. doi:10.1046/j.1365-2664.2003.00762.x.
  53. Klotzli, Frank; Grootjans, Ab P. (2001). "Restoration of Natural and Semi-Natural Wetland Systems in Central Europe: Progress and Predictability of Developments". Restoration Ecology. 9 (2): 209–219. doi:10.1046/j.1526-100x.2001.009002209.x. hdl:11370/477aedb5-d154-4121-b6ef-2cb616eaf70e. ISSN 1061-2971. S2CID 73522613.
  54. "Restoration Ecology". environment-ecology.com. Retrieved April 22, 2020.
  55. Goosem, Stephen; Tucker, Nigel; Wet Tropics Management Authority, (issuing body.) (2013), Repairing the rainforest (2 ed.), Wet Tropics Management Authority ; [Tarzali, Queensland] : Biotropica Australia, pp. 28, 29, 30, ISBN 978-1-921591-66-2
  56. "How plant-based diets not only reduce our carbon footprint, but also increase carbon capture". Leiden University. Retrieved February 14, 2022.
  57. Sun, Zhongxiao; Scherer, Laura; Tukker, Arnold; Spawn-Lee, Seth A.; Bruckner, Martin; Gibbs, Holly K.; Behrens, Paul (January 2022). "Dietary change in high-income nations alone can lead to substantial double climate dividend". Nature Food. 3 (1): 29–37. doi:10.1038/s43016-021-00431-5. ISSN 2662-1355. PMID 37118487. S2CID 245867412.
  58. Breed, Martin F.; Stead, Michael G.; Ottewell, Kym M.; Gardner, Michael G.; Lowe, Andrew J. (February 1, 2013). "Which provenance and where? Seed sourcing strategies for revegetation in a changing environment". Conservation Genetics. 14 (1): 1–10. doi:10.1007/s10592-012-0425-z. ISSN 1566-0621. S2CID 12813499.
  59. McKay, John K.; Christian, Caroline E.; Harrison, Susan; Rice, Kevin J. (2005). ""How Local Is Local?"-A Review of Practical and Conceptual Issues in the Genetics of Restoration". Restoration Ecology. 13 (3): 432–440. doi:10.1111/j.1526-100x.2005.00058.x. ISSN 1061-2971.
  60. Bower, Andrew D.; Clair, J. Bradley St.; Erickson, Vicky (July 1, 2014). "Generalized provisional seed zones for native plants". Ecological Applications. 24 (5): 913–919. doi:10.1890/13-0285.1. ISSN 1939-5582. PMID 25154085. S2CID 30260358.
  61. Lawrence, Beth A.; Kaye, Thomas N. (March 1, 2011). "Reintroduction of Castilleja levisecta: Effects of Ecological Similarity, Source Population Genetics, and Habitat Quality". Restoration Ecology. 19 (2): 166–176. doi:10.1111/j.1526-100x.2009.00549.x. ISSN 1526-100X. S2CID 85653946.
  62. Borrell, James S.; Zohren, Jasmin; Nichols, Richard A.; Buggs, Richard J. A. (2020). "Genomic assessment of local adaptation in dwarf birch to inform assisted gene flow". Evolutionary Applications. 13 (1): 161–175. doi:10.1111/eva.12883. ISSN 1752-4571. PMC 6935589. PMID 31892950.
  63. Rellstab, Christian; Zoller, Stefan; Walthert, Lorenz; Lesur, Isabelle; Pluess, Andrea R.; Graf, René; Bodénès, Catherine; Sperisen, Christoph; Kremer, Antoine; Gugerli, Felix (December 2016). "Signatures of local adaptation in candidate genes of oaks ( Quercus spp.) with respect to present and future climatic conditions". Molecular Ecology. 25 (23): 5907–5924. doi:10.1111/mec.13889. PMID 27759957. S2CID 31814079.
  64. Hilderbrand, R. H., A. C. Watts, and A. M. Randle 2005. The myths of restoration ecology. Ecology and Society 10(1): 19. [online] URL: http://www.ecologyandsociety.org/vol10/iss1/art19/
  65. HOLL, KAREN D.; HAYES, GREY F. (February 27, 2006). "Challenges to Introducing and Managing Disturbance Regimes for Holocarpha macradenia, an Endangered Annual Grassland Forb". Conservation Biology. 20 (4): 1121–1131. doi:10.1111/j.1523-1739.2006.00416.x. ISSN 0888-8892. PMID 16922228. S2CID 18822692.
  66. Macdonald, David (2002). "The ecological context: a species population perspective". Handbook of Ecological Restoration. 1: 47–65. doi:10.1017/CBO9780511549984.006. ISBN 9780521791281.
  67. Alpert, P. 2002. Managing the wild: should stewards be pilots? Frontiers in Ecology and the Environment 9(2): 494-499.
  68. Dickens, Sara Jo M.; Suding, Katharine N. (June 1, 2013). "Spanning the Science-Practice Divide: Why Restoration Scientists Need to be More Involved with Practice". Ecological Restoration. 31 (2): 134–140. doi:10.3368/er.31.2.134. ISSN 1522-4740. S2CID 4657808.
  69. Cabin, Robert J.; Clewell, Andre; Ingram, Mrill; McDonald, Tein; Temperton, Vicky (November 1, 2010). "Bridging Restoration Science and Practice: Results and Analysis of a Survey from the 2009 Society for Ecological Restoration International Meeting". Restoration Ecology. 18 (6): 783–788. doi:10.1111/j.1526-100x.2010.00743.x. hdl:2027.42/79142. ISSN 1526-100X. S2CID 46326690.
  70. David, Erica; Dixon, Kingsley W.; Menz, Myles H. M. (May 1, 2016). "Cooperative Extension: A Model of Science–Practice Integration for Ecosystem Restoration". Trends in Plant Science. 21 (5): 410–417. doi:10.1016/j.tplants.2016.01.001. ISSN 1360-1385. PMID 26838476.
  71. Burbidge, Allan H.; Maron, Martine; Clarke, Michael F.; Baker, Jack; Oliver, Damon L.; Ford, Greg (April 1, 2011). "Linking science and practice in ecological research and management: How can we do it better?". Ecological Management & Restoration. 12 (1): 54–60. doi:10.1111/j.1442-8903.2011.00569.x. ISSN 1442-8903.
  72. Cabin, Robert J. (March 1, 2007). "Science-Driven Restoration: A Square Grid on a Round Earth?". Restoration Ecology. 15 (1): 1–7. doi:10.1111/j.1526-100x.2006.00183.x. ISSN 1526-100X. S2CID 73715844.
  73. Duc, M. G. Le; Pakeman, R. J.; Marrs, R. H. (June 1, 2003). "Changes in the rhizome system of bracken subjected to long-term experimental treatment". Journal of Applied Ecology. 40 (3): 508–522. doi:10.1046/j.1365-2664.2003.00818.x. ISSN 1365-2664.
  74. Erskine Ogden, Jennifer A.; Rejmánek, Marcel (October 2005). "Recovery of native plant communities after the control of a dominant invasive plant species, Foeniculum vulgare: Implications for management". Biological Conservation. 125 (4): 427–439. doi:10.1016/j.biocon.2005.03.025.
  75. Higgs, E.S., Harris, J.A., Heger, T. et al. (2018) Keep ecological restoration open and flexible. Nat Ecol Evol 2, 580.
  76. Bernhardt, Emily S.; Sudduth, Elizabeth B.; Palmer, Margaret A.; Allan, J. David; Meyer, Judy L.; Alexander, Gretchen; Follastad-Shah, Jennifer; Hassett, Brooke; Jenkinson, Robin (September 1, 2007). "Restoring Rivers One Reach at a Time: Results from a Survey of U.S. River Restoration Practitioners" (PDF). Restoration Ecology. 15 (3): 482–493. doi:10.1111/j.1526-100x.2007.00244.x. hdl:2027.42/72915. ISSN 1526-100X. S2CID 20534915.
  77. Dooley, Kate; Nicholls, Zebedee; Meinshausen, Malte (July 15, 2022). "Carbon removals from nature restoration are no substitute for steep emission reductions". One Earth. 5 (7): 812–824. Bibcode:2022OEart...5..812D. doi:10.1016/j.oneear.2022.06.002. ISSN 2590-3330. S2CID 250231236.
  78. Dooley, Kate; Nicholls, Zebedee. "Nature restoration no substitute for cutting fossil fuels". phys.org. Retrieved August 21, 2022.
  79. "Press corner". European Commission – European Commission. Retrieved September 28, 2020.
  80. Walker, Xanthe J.; Baltzer, Jennifer L.; Cumming, Steven G.; Day, Nicola J.; Ebert, Christopher; Goetz, Scott; Johnstone, Jill F.; Potter, Stefano; Rogers, Brendan M.; Schuur, Edward A. G.; Turetsky, Merritt R.; Mack, Michelle C. (August 2019). "Increasing wildfires threaten historic carbon sink of boreal forest soils". Nature. 572 (7770): 520–523. Bibcode:2019Natur.572..520W. doi:10.1038/s41586-019-1474-y. ISSN 1476-4687. PMID 31435055. S2CID 201124728. Retrieved September 28, 2020.
  81. "Climate emissions from tropical forest damage 'underestimated by a factor of six'". The Guardian. October 31, 2019. Retrieved September 28, 2020.
  82. "Why Keeping Mature Forests Intact Is Key to the Climate Fight". Yale E360. Retrieved September 28, 2020.
  83. "Would a Large-scale Reforestation Effort Help Counter the Global Warming Impacts of Deforestation?". Union of Concerned Scientists. September 1, 2012. Retrieved September 28, 2020.
  84. "Planting trees is no substitute for natural forests". phys.org. Retrieved May 2, 2021.
  85. Young, Truman P (2000). "Restoration ecology and conservation biology". Biological Conservation. 92 (1): 73–83. CiteSeerX 10.1.1.493.1604. doi:10.1016/s0006-3207(99)00057-9. ISSN 0006-3207.
  86. Allen, Craig D (2002). "Ecological restoration of southwestern Ponderosa pine ecosystems: A broad perspective". Ecological Applications. 12 (5): 1418–1433. doi:10.1890/1051-0761(2002)012[1418:EROSPP]2.0.CO;2.
  87. Harris, J. A. (December 2003). "Measurements of the soil microbial community for estimating the success of restoration". European Journal of Soil Science. 54 (4): 801–808. doi:10.1046/j.1351-0754.2003.0559.x. ISSN 1351-0754. S2CID 96561755.
  88. "International Principles & Standards for the Practice of Ecological Restoration, 2nd Edition". September 27, 2019. Retrieved January 15, 2019.
  89. Anderson, K. (2005). Tending the Wild: Native American Knowledge and the Management of California's Natural Resources. Berkeley: University of California Press. ISBN 978-0520238565. OCLC 56103978.
  90. Jordan, III, W. R. (2011). Making Mature Whole: A History of Ecological Restoration. Washington, DC: Island Press. ISBN 9781610910422. OCLC 750183084.
  91. Court, F. E. (2012). Pioneers of Ecological Restoration: The People and Legacy of the University of Wisconsin Arboretum. Madison: University of Wisconsin Press. ISBN 978-0299286637. OCLC 814694131.
  92. Curtis, J. T. (1971). The Vegetation of Wisconsin: An Ordination of Plant Communities. Madison: University of Wisconsin Press. ISBN 9780299019433. OCLC 811410421.
  93. "Fermilab | History and Archives | Site and Natural History". history.fnal.gov. Retrieved March 22, 2023.
  94. Ardill, Peter J (2021) Innovative Federation and Inter-war Period repair of degraded natural areas and their ecosystems: local government and community restoration of Coast Teatree Leptospermum laevigatum at Port Phillip Bay, Victoria, Australia. The Repair Press Sydney (February), p. 34
  95. Ardill 2022.
  96. Ardill 2022, p. 9.
  97. Ardill 2022, pp. 32–34.
  98. Ardill, Peter J. (2017) "Albert Morris and the Broken Hill regeneration area: time, landscape and renewal." Australian Association of Bush Regenerators (AABR). Sydney http://www.aabr.org.au/morris-broken-hill/
  99. Ardill, Peter J. (2017) "Albert Morris and the Broken Hill regeneration area: time, landscape and renewal." Australian Association of Bush Regenerators (AABR). Sydney http://www.aabr.org.au/morris-broken-hill/
  100. Ardill 2022: 54
  101. McDonald T in Jordan, William R. & Lubick, George M. (2012) Making Nature Whole: A History of Ecological Restoration. Washington, D.C. Island Press p.73 ISBN 9781597265126
  102. Paterson, Owen (November 27, 2012). "Owen Paterson's speech to Royal Society on Natural Capital Committee". gov.uk. Retrieved June 4, 2018.
  103. Stocker, Laura; Collard, Leonard; Rooney, Angela (July 2, 2016). "Aboriginal world views and colonisation: implications for coastal sustainability †". Local Environment. 21 (7): 844–865. doi:10.1080/13549839.2015.1036414. ISSN 1354-9839. S2CID 143198003.
  104. Douterlungne, David; Levy-Tacher, Samuel I.; Golicher, Duncan J.; Dañobeytia, Francisco Román (October 29, 2008). "Applying Indigenous Knowledge to the Restoration of Degraded Tropical Rain Forest Clearings Dominated by Bracken Fern". Restoration Ecology. 18 (3): 322–329. doi:10.1111/j.1526-100x.2008.00459.x. ISSN 1061-2971. S2CID 85960569.
  105. Maffi, Luisa (September 16, 2005). "Linguistic, cultural, and biological diversity". Annual Review of Anthropology. 34 (1): 599–617. doi:10.1146/annurev.anthro.34.081804.120437. ISSN 0084-6570.
  106. Anderson, M. Kat (June 14, 2005). Tending the Wild. University of California Press. doi:10.1525/9780520933101. ISBN 978-0-520-93310-1.
  107. Walker, E.T.; Wehi, P.M.; Nelson, N.J.; Beggs, J.R.; Whaanga, H (2019). "Kaitiakitanga, place and the urban restoration agenda". New Zealand Journal of Ecology. 43 (3). doi:10.20417/nzjecol.43.34.
  108. Hall, Monique Mae; Wehi, Priscilla M.; Whaanga, Hēmi; Walker, Erana T.; Koia, Jonni Hazeline; Wallace, Kiri Joy (2021). "Promoting social and environmental justice to support Indigenous partnerships in urban ecosystem restoration". Restoration Ecology. 29 (1): e13305. doi:10.1111/rec.13305. ISSN 1526-100X. S2CID 228960211.
  109. Broughton, D; (Te Aitanga-a-Hauiti, Taranaki, Ngā; McBreen, K; (Waitaha, Kāti Māmoe, Ngāi Tahu) (April 3, 2015). "Mātauranga Māori, tino rangatiratanga and the future of New Zealand science". Journal of the Royal Society of New Zealand. 45 (2): 83–88. Bibcode:2015JRSNZ..45...83B. doi:10.1080/03036758.2015.1011171. ISSN 0303-6758. S2CID 129384221.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  110. Anderson, M. Kat (2005). Tending the Wild: Native American Knowledge and the Management of California's Natural Resources. Berkeley: University of California Press. pp. 1–10, 358–364.
  111. "Restoration Ecology", SER. Accessed: September 14, 2015.
  112. "Ecological Management & Restoration", John Wiley & Sons. Accessed: September 14, 2015.
  113. "Ecological Restoration", University of Wisconsin Press. Accessed: September 14, 2015.

Bibliography

  • Allen, M.F., Jasper, D.A. & Zak, J.C. (2002). Micro-organisms. In Perrow M.R. & Davy, A.J. (Eds.), Handbook of Ecological Restoration, Volume 1 Principles of Restoration, pp. 257–278. Cambridge: Cambridge University Press. ISBN 0-521-79128-6
  • Anderson, M.K. (2005). Tending the Wild: Native American knowledge and the management of California's natural resources. Berkeley: University of California Press. ISBN 0-520-23856-7
  • Ardill, Peter J. (2017) Albert Morris and the Broken Hill regeneration area: time, landscape and renewal. Australian Association of Bush Regenerators (AABR). Sydney. http://www.aabr.org.au/morris-broken-hill/
  • Ardill, Peter J (2021) ‘Innovative Federation and Inter-war Period repair of degraded natural areas and their ecosystems: local government and community restoration of Coast Teatree Leptospermum laevigatum at Port Phillip Bay, Victoria, Australia’ The Repair Press Sydney (February) https://ecologicalrestorationhistory.org/articles/
  • Ardill, Peter J. (2022). "Rekindling memory of environmental repair responses to the Australian wind erosion crisis of 1930–45: ecologically aligned restoration of degraded arid-zone pastoral lands and the resultant shaping of state soil conservation policies" (PDF). Ecological Restoration History. The Repair Press Sydney.
  • Baer, S.G., Collins, S.L., Blair, J.M., Knapp, A.K. & Fiedler, A.K. 2005. "Soil heterogeneity effects on tallgrass prairie community heterogeneity: an application of ecological theory to restoration ecology". Restoration Ecology 13 (2), 413–424.
  • Bradshaw, A.D. (1987). Restoration: the acid test for ecology. In Jordan, W.R., Gilpin, M.E. & Aber, J.D. (Eds.), Restoration Ecology: A Synthetic Approach to Ecological Research, pp. 23–29. Cambridge: Cambridge University Press. ISBN 0-521-33728-3
  • Bradshaw, A. D. 1997. What do we mean by restoration?. Restoration ecology and sustainable development., eds. Krystyna M., Urbanska, Nigel R., Webb, Edwards P. University Press, Cambridge.
  • Court, Franklin E. (2012) Pioneers of ecological restoration: the people and legacy of the University of Wisconsin Arboretum. Madison: University of Wisconsin Press. ISBN 9780299286644
  • Daily, G.C., Alexander, S., Ehrlich, P.R., Goulder, L., Lubchenco, J., Matson, P.A., Mooney, H.A., Postel, S., Schneider, S.H., Tilman, D. & Woodwell, G.M. (1997) "Ecosystem Services: Benefits Supplied to Human Societies by Natural Ecosystems". Issues in Ecology 1 (2), 1–18.
  • Harris, J.A. (2003) Measurements of the soil microbial community for estimating the success of restoration. European Journal of Soil Science. 54, 801–808.
  • Harris, J.A., Hobbs, R.J, Higgs, E. and Aronson, J. (2006) Ecological restoration and global climate change. Restoration Ecology 14(2) 170 - 176.
  • Hilderbrand et al. 2005. The myths of restoration ecology. Ecology and Society 10(2): 19. Full Article
  • Holl, K. 2006. Professor of environmental studies at the university of California santa cruz. Personal Communication.
  • Jordan, William R. & Lubick, George M. (2012) Making nature whole: a history of ecological restoration. Washington, D.C. Island Press. ISBN 9781597265126
  • Klotzi, F. & Gootjans, A.P. (2001). Restoration of natural and semi-natural wetland systems in Central Europe: progress and predictability of developments. Restoration Ecology 9 (2), 209–219.
  • Liu, John D (2011). Finding Sustainability in Ecosystem Restoration. Kosmos Fall | Winter 2011. Full Article
  • Luken, J.O. (1990). Directing Ecological Succession. New York: Chapman and Hall. ISBN 0-412-34450-5
  • MacDonald et al. 2002. The ecological context: a species population perspective. Cambridge University Press, Cambridge.
  • Novacek, M.J. & Cleland, E.E. (2001). "The current biodiversity extinction event: Scenarios for mitigation and recovery". Proceedings of the National Academy of Sciences 98 (10), 5466–5470.
  • Seabloom, E.W., Harpole, W.S., Reichman, O.J. & Tilman, D. 2003. "Invasion, competitive dominance, and resource use by exotic and native California grassland species". Proceedings of the National Academy of Sciences 100 (23), 13384–13389.
  • SER (2004). The SER Primer on Ecological Restoration, Version 2. Society for Ecological Restoration Science and Policy Working Group. https://web.archive.org/web/20060207050251/http://www.ser.org/reading_resources.asp
  • Shears N.T. (2007) Biogeography, community structure and biological habitat types of subtidal reefs on the South Island West Coast, New Zealand. Science for Conservation 281. p 53. Department of Conservation, New Zealand.
  • Speth, J. G. 2004. Red Sky at Morning: America and the Crisis of the Global Environment. Yale University Press, Connecticut.
  • van Andel, J. & Grootjans, A.P. (2006). Restoration Ecology: The New Frontier . In van Andel, J. & Aronson, J. (Eds.), Restoration Ecology, pp. 16–28. Massachusetts: Blackwell. ISBN 0-632-05834-X
  • White, P.S. & Jentsch, A. (2004). Disturbance, succession and community assembly in terrestrial plant communities. In Temperton, V.K., Hobbs, R.J., Nuttle, T. & Halle, S. (Eds.), Assembly Rules and Restoration Ecology: Bridging the Gap Between Theory and Practice, pp. 342–366. Washington, DC: Island Press. ISBN 1-55963-375-1
  • Wilson, E. O. (1988). Biodiversity. Washington DC: National Academy. ISBN 0-309-03739-5
  • Young, T.P. (2000). "Restoration ecology and conservation biology". Biological Conservation. 92, 73–83.
  • Young, T.P., Chase, J.M. & Huddleston, R.T. (2001). "Succession and assembly as conceptual bases in community ecology and ecological restoration". Ecological Restoration. 19, 5–19.
  • Young, T.P., Petersen, D.A. & Clary, J.J. (2005). "The ecology of restoration: historical links, emerging issues and unexplored realms". Ecology Letters 8, 662–673.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.