Guadalupe Group

The Guadalupe Group (Spanish: Grupo Guadalupe, K2G, Ksg) is a geological group of the Altiplano Cundiboyacense, Eastern Ranges of the Colombian Andes. The group, a sequence of shales and sandstones, is subdivided into three formations; Arenisca Dura, Plaeners and Arenisca Labor-Tierna, and dates to the Late Cretaceous period; Campanian-Maastrichtian epochs and at its type section has a thickness of 750 metres (2,460 ft).

Guadalupe Group
Stratigraphic range: Campanian-Maastrichtian
~
Guadalupe Hill
Type locality of the Guadalupe Group
TypeGeological group
Sub-unitsArenisca Labor-Tierna
Plaeners
Arenisca Dura
UnderliesGuaduas Formation
OverliesVilleta Group
 Conejo Fm. & Chipaque Fm.
Lithology
PrimarySandstone, shale
OtherSalt (allochthonous)
Location
Coordinates4°35′31″N 74°03′15″W
RegionAltiplano Cundiboyacense
Eastern Ranges, Andes
Country Colombia
Type section
Named forGuadalupe Hill
Named byPérez & Salazar
Year defined1978
Coordinates4°35′31″N 74°03′15″W
RegionCundinamarca, Boyacá
Country Colombia
Thickness at type section750 metres (2,460 ft)

Paleogeography of Northern South America
65 Ma, by Ron Blakey

Etymology

The group was published in 1978 by Pérez and Salazar and named after its type locality Guadalupe Hill in the Eastern Hills of Bogotá.[1]

Description

Lithologies

The Guadalupe Group is characterised by three formations; two sandstone sequences, Arenisca Dura and Arenisca Labor-Tierna, and an intermediate shale formation; Plaeners.[1]

Stratigraphy and depositional environment

The Guadalupe Group overlies the Conejo Formation in the central part of the Altiplano Cundiboyacense and the Chipaque Formation in the eastern part and is overlain by the Guaduas Formation. Some authors define the Guadalupe Group as a formation and call the individual formations members.[2] The thickness of the Guadalupe Group in its type locality Guadalupe Hill and the El Cable Hill is 750 metres (2,460 ft).[3] The age has been estimated to be Campanian-Maastrichtian.[4] The Guadalupe Group has been deposited in a marine environment.[5]

Outcrops

Guadalupe Group is located in the Bogotá savanna
Guadalupe Group
Type locality of the Guadalupe Group to the east of the Bogotá savanna

The formations of the Guadalupe Group are apart from its type locality at Guadalupe Hill, Bogotá, found in other parts of the Eastern Hills of Bogotá, the Ocetá Páramo and many other locations, such as the Piedras del Tunjo in the Eastern Ranges.[4][6]

At present, the Guadalupe Group in the anticlinals of Zipaquirá and Nemocón contains rock salt. These halite deposits are not originally deposited in the Late Cretaceous Guadalupe Group, yet are allochthonous diapirs formed when the Jurassic-Lower Cretaceous normal faults were reactivated as reverse faults during the mayor Miocene tectonic movements of the Eastern Ranges.[7] The salt had been deposited during the Early Cretaceous (Valanginian-Barremian, approximately 135 to 125 Ma),[8] intruding into the overlying formations of the Upper Cretaceous.[9]

Regional correlations

Cretaceous stratigraphy of the central Colombian Eastern Ranges
AgePaleomapVMMGuaduas-VélezW Emerald BeltVilleta anticlinalChiquinquirá-
Arcabuco
Tunja-
Duitama
Altiplano CundiboyacenseEl Cocuy
MaastrichtianUmirCórdobaSecaerodedGuaduasColón-Mito Juan
UmirGuadalupe
CampanianCórdoba
Oliní
SantonianLa LunaCimarrona - La TablaLa Luna
ConiacianOliníVilletaConejoChipaque
GüagüaquíLoma GordaundefinedLa Frontera
TuronianHonditaLa FronteraOtanche
CenomanianSimitíhiatusLa CoronaSimijacaCapacho
Pacho Fm.Hiló - PachoChuruvitaUneAguardiente
AlbianHilóChiquinquiráTibasosaUne
TablazoTablazoCapotes - La Palma - SimitíSimitíTibú-Mercedes
AptianCapotesSocotá - El PeñónPajaFómeque
PajaPajaEl PeñónTrincherasRío Negro
La Naveta
Barremian
HauterivianMuzoCáquezaLas Juntas
RosablancaRitoque
ValanginianRitoqueFuratenaÚtica - MurcaRosablancahiatusMacanal
Rosablanca
BerriasianCumbreCumbreLos MediosGuavio
TamborArcabucoCumbre
Sources
Stratigraphy of the Llanos Basin and surrounding provinces
MaAgePaleomapRegional eventsCatatumboCordilleraproximal Llanosdistal LlanosPutumayoVSMEnvironmentsMaximum thicknessPetroleum geologyNotes
0.01Holocene
Holocene volcanism
Seismic activity
alluviumOverburden
1Pleistocene
Pleistocene volcanism
Andean orogeny 3
Glaciations
GuayaboSoatá
Sabana
NecesidadGuayaboGigante
Neiva
Alluvial to fluvial (Guayabo)550 m (1,800 ft)
(Guayabo)
[10][11][12][13]
2.6Pliocene
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3MessinianAndean orogeny 3
Foreland
MarichuelaCaimánHonda[12][14]
13.5LanghianRegional floodingLeónhiatusCajaLeónLacustrine (León)400 m (1,300 ft)
(León)
Seal[13][15]
16.2BurdigalianMiocene inundations
Andean orogeny 2
C1Carbonera C1OspinaProximal fluvio-deltaic (C1)850 m (2,790 ft)
(Carbonera)
Reservoir[14][13]
17.3C2Carbonera C2Distal lacustrine-deltaic (C2)Seal
19C3Carbonera C3Proximal fluvio-deltaic (C3)Reservoir
21Early MiocenePebas wetlandsC4Carbonera C4BarzalosaDistal fluvio-deltaic (C4)Seal
23Late Oligocene
Andean orogeny 1
Foredeep
C5Carbonera C5OritoProximal fluvio-deltaic (C5)Reservoir[11][14]
25C6Carbonera C6Distal fluvio-lacustrine (C6)Seal
28Early OligoceneC7C7PepinoGualandayProximal deltaic-marine (C7)Reservoir[11][14][16]
32Oligo-EoceneC8UsmeC8onlapMarine-deltaic (C8)Seal
Source
[16]
35Late Eocene
MiradorMiradorCoastal (Mirador)240 m (790 ft)
(Mirador)
Reservoir[13][17]
40Middle EoceneRegaderahiatus
45
50Early Eocene
SochaLos CuervosDeltaic (Los Cuervos)260 m (850 ft)
(Los Cuervos)
Seal
Source
[13][17]
55Late PaleocenePETM
2000 ppm CO2
Los CuervosBogotáGualanday
60Early PaleoceneSALMABarcoGuaduasBarcoRumiyacoFluvial (Barco)225 m (738 ft)
(Barco)
Reservoir[10][11][14][13][18]
65Maastrichtian
KT extinctionCatatumboGuadalupeMonserrateDeltaic-fluvial (Guadalupe)750 m (2,460 ft)
(Guadalupe)
Reservoir[10][13]
72CampanianEnd of riftingColón-Mito Juan[13][19]
83SantonianVilleta/Güagüaquí
86Coniacian
89TuronianCenomanian-Turonian anoxic eventLa LunaChipaqueGachetáhiatusRestricted marine (all)500 m (1,600 ft)
(Gachetá)
Source[10][13][20]
93Cenomanian
Rift 2
100AlbianUneUneCaballosDeltaic (Une)500 m (1,600 ft)
(Une)
Reservoir[14][20]
113Aptian
CapachoFómequeMotemaYavíOpen marine (Fómeque)800 m (2,600 ft)
(Fómeque)
Source (Fóm)[11][13][21]
125BarremianHigh biodiversityAguardientePajaShallow to open marine (Paja)940 m (3,080 ft)
(Paja)
Reservoir[10]
129Hauterivian
Rift 1Tibú-
Mercedes
Las JuntashiatusDeltaic (Las Juntas)910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun)[10]
133ValanginianRío NegroCáqueza
Macanal
Rosablanca
Restricted marine (Macanal)2,935 m (9,629 ft)
(Macanal)
Source (Mac)[11][22]
140BerriasianGirón
145TithonianBreak-up of PangeaJordánArcabucoBuenavista
Batá
SaldañaAlluvial, fluvial (Buenavista)110 m (360 ft)
(Buenavista)
"Jurassic"[14][23]
150Early-Mid Jurassic
Passive margin 2La Quinta
Montebel

Noreán
hiatusCoastal tuff (La Quinta)100 m (330 ft)
(La Quinta)
[24]
201Late Triassic
MucuchachiPayandé[14]
235Early Triassic
Pangeahiatus"Paleozoic"
250Permian
300Late Carboniferous
Famatinian orogenyCerro Neiva
()
[25]
340Early CarboniferousFossil fish
Romer's gap
Cuche
(355-385)
Farallones
()
Deltaic, estuarine (Cuche)900 m (3,000 ft)
(Cuche)
360Late Devonian
Passive margin 1Río Cachirí
(360-419)
Ambicá
()
Alluvial-fluvial-reef (Farallones)2,400 m (7,900 ft)
(Farallones)
[22][26][27][28][29]
390Early Devonian
High biodiversityFloresta
(387-400)
El Tíbet
Shallow marine (Floresta)600 m (2,000 ft)
(Floresta)
410Late SilurianSilurian mystery
425Early Silurianhiatus
440Late Ordovician
Rich fauna in BoliviaSan Pedro
(450-490)
Duda
()
470Early OrdovicianFirst fossilsBusbanzá
(>470±22)
Chuscales
Otengá
Guape
()
Río Nevado
()
Hígado
()
Agua Blanca
Venado
(470-475)
[30][31][32]
488Late Cambrian
Regional intrusionsChicamocha
(490-515)
Quetame
()
Ariarí
()
SJ del Guaviare
(490-590)
San Isidro
()
[33][34]
515Early CambrianCambrian explosion[32][35]
542Ediacaran
Break-up of Rodiniapre-Quetamepost-ParguazaEl Barro
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement[36][37]
600Neoproterozoic
Cariri Velhos orogenyBucaramanga
(600-1400)
pre-Guaviare[33]
800
Snowball Earth[38]
1000Mesoproterozoic
Sunsás orogenyAriarí
(1000)
La Urraca
(1030-1100)
[39][40][41][42]
1300Rondônia-Juruá orogenypre-AriaríParguaza
(1300-1400)
Garzón
(1180-1550)
[43]
1400
pre-Bucaramanga[44]
1600PaleoproterozoicMaimachi
(1500-1700)
pre-Garzón[45]
1800
Tapajós orogenyMitú
(1800)
[43][45]
1950Transamazonic orogenypre-Mitú[43]
2200Columbia
2530Archean
Carajas-Imataca orogeny[43]
3100Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]

Panorama

The Cerro de Águilas on the Ocetá Páramo is composed of sediments belonging to the Guadalupe Group

See also

Geology of the Eastern Hills
Geology of the Ocetá Páramo
Geology of the Altiplano Cundiboyacense

Notes

  1. based on Duarte et al. (2019)[46], García González et al. (2009),[47] and geological report of Villavicencio[48]
  2. based on Duarte et al. (2019)[46] and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009[49]

References

  1. Montoya Arenas & Reyes Torres, 2005, p.37
  2. Guerrero Uscátegui, 1992, p.4
  3. Guerrero Uscátegui, 1992, p.5
  4. Montoya Arenas & Reyes Torres, 2005, pp.38-50
  5. Villamil, 2012, p.164
  6. Plancha 227, 1998
  7. Montoya Arenas & Reyes Torres, 2005, p.98
  8. Guerrero Uscátegui, 1993, p.12
  9. García & Jiménez, 2016, p.24
  10. García González et al., 2009, p.27
  11. García González et al., 2009, p.50
  12. García González et al., 2009, p.85
  13. Barrero et al., 2007, p.60
  14. Barrero et al., 2007, p.58
  15. Plancha 111, 2001, p.29
  16. Plancha 177, 2015, p.39
  17. Plancha 111, 2001, p.26
  18. Plancha 111, 2001, p.24
  19. Plancha 111, 2001, p.23
  20. Pulido & Gómez, 2001, p.32
  21. Pulido & Gómez, 2001, p.30
  22. Pulido & Gómez, 2001, pp.21-26
  23. Pulido & Gómez, 2001, p.28
  24. Correa Martínez et al., 2019, p.49
  25. Plancha 303, 2002, p.27
  26. Terraza et al., 2008, p.22
  27. Plancha 229, 2015, pp.46-55
  28. Plancha 303, 2002, p.26
  29. Moreno Sánchez et al., 2009, p.53
  30. Mantilla Figueroa et al., 2015, p.43
  31. Manosalva Sánchez et al., 2017, p.84
  32. Plancha 303, 2002, p.24
  33. Mantilla Figueroa et al., 2015, p.42
  34. Arango Mejía et al., 2012, p.25
  35. Plancha 350, 2011, p.49
  36. Pulido & Gómez, 2001, pp.17-21
  37. Plancha 111, 2001, p.13
  38. Plancha 303, 2002, p.23
  39. Plancha 348, 2015, p.38
  40. Planchas 367-414, 2003, p.35
  41. Toro Toro et al., 2014, p.22
  42. Plancha 303, 2002, p.21
  43. Bonilla et al., 2016, p.19
  44. Gómez Tapias et al., 2015, p.209
  45. Bonilla et al., 2016, p.22
  46. Duarte et al., 2019
  47. García González et al., 2009
  48. Pulido & Gómez, 2001
  49. García González et al., 2009, p.60

Bibliography

  • García González, Mario; Ricardo Mier Umaña; Luis Enrique Cruz Guevara, and Mauricio Vásquez. 2009. Informe Ejecutivo - evaluación del potencial hidrocarburífero de las cuencas colombianas, 1-219. Universidad Industrial de Santander.
  • García, Helbert, and Giovanny Jiménez. 2016. Structural analysis of the Zipaquirá Anticline (Eastern Cordillera, Colombia). Boletín de Ciencias de la Tierra, Universidad Nacional de Colombia 39. 21-32. .
  • Guerrero Uscátegui, Alberto Lobo. 1993. Informe sobre la Cuenca Petrolífera de la Sabana de Bogotá, Colombia, 1–29.
  • Guerrero Uscátegui, Alberto Lobo. 1992. Geología e Hidrogeología de Santafé de Bogotá y su Sabana, 1–20. Sociedad Colombiana de Ingenieros.
  • Montoya Arenas, Diana María, and Germán Alfonso Reyes Torres. 2005. Geología de la Sabana de Bogotá, 1–104. INGEOMINAS.
  • Villamil, Tomas. 2012. Chronology Relative Sea Level History and a New Sequence Stratigraphic Model for Basinal Cretaceous Facies of Colombia, 161–216. Society for Sedimentary Geology (SEPM).

Maps

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.