Solanaceae

The Solanaceae (/ˌsɒləˈnsi., -ˌ/),[2] or the nightshades, are a family of flowering plants that ranges from annual and perennial herbs to vines, lianas, epiphytes, shrubs, and trees, and includes a number of agricultural crops, medicinal plants, spices, weeds, and ornamentals. Many members of the family contain potent alkaloids, and some are highly toxic, but many—including tomatoes, potatoes, eggplant, bell and chili peppers—are used as food. The family belongs to the order Solanales, in the asterid group and class Magnoliopsida (dicotyledons).[3] The Solanaceae consists of about 98 genera and some 2,700 species,[4] with a great diversity of habitats, morphology and ecology.

Solanaceae
Temporal range: Early Eocene to Recent,
A flowering Brugmansia suaveolens
from the US Botanic Garden
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Asterids
Order: Solanales
Family: Solanaceae
Juss.
Subfamilies[1]
Fruits including tomatoes, tomatillos, eggplant, bell peppers and chili peppers, all of which are closely related members of the Solanaceae.

The name Solanaceae derives from the genus Solanum. The etymology of the Latin word is unclear. The name may come from a perceived resemblance of certain solanaceous flowers to the sun and its rays. At least one species of Solanum is known as the "sunberry". Alternatively, the name could originate from the Latin verb solare, meaning "to soothe", presumably referring to the soothing pharmacological properties of some of the psychoactive species of the family.

This family has a worldwide distribution, being present on all continents except Antarctica. The greatest diversity in species is found in South America and Central America. In 2017, scientists reported on their discovery and analysis of a fossil species belonging to the living genus Physalis, Physalis infinemundi, found in the Patagonian region of Argentina, dated to 52 million years ago. The finding has pushed back the earliest appearance of the plant family Solanaceae.[5]

The Solanaceae family includes a number of commonly collected or cultivated species. The most economically important genus of the family is Solanum, which contains the potato (S. tuberosum, in fact, another common name of the family is the "potato family"), the tomato (S. lycopersicum), and the eggplant or aubergine (S. melongena). Another important genus, Capsicum, produces both chili peppers and bell peppers.

The genus Physalis produces the so-called groundcherries, as well as the tomatillo (Physalis philadelphica) and Physalis peruviana (Cape gooseberry). Alkekengi officinarum (Chinese Lantern) was previously included in the genus Physalis (as Physalis alkekengi), until molecular and genetic evidence placed it as the type species of a new genus.[6][7] The genus Lycium contains the boxthorns and the goji berry, Lycium barbarum. Nicotiana contains, among other species, tobacco. Some other important members of Solanaceae include a number of ornamental plants such as Petunia, Browallia, and Lycianthes, and sources of psychoactive alkaloids, Datura, Mandragora (mandrake), and Atropa belladonna (deadly nightshade). Certain species are widely known for their medicinal uses, their psychotropic effects, or for being poisonous.[8]

Most of the economically important genera are contained in the subfamily Solanoideae, with the exceptions of tobacco (Nicotiana tabacum, Nicotianoideae) and petunia (Petunia × hybrida, Petunioideae).

Many of the Solanaceae, such as tobacco and petunia, are used as model organisms in the investigation of fundamental biological questions at the cellular, molecular, and genetic levels.[9][10]

Etymology and pronunciation

The name "Solanaceae" (US: /ˌsləˈnsi, -siˌ, -siˌ, -siˌ/) comes to international scientific vocabulary from Neo-Latin, from Solanum, the type genus, + -aceae,[11] a standardized suffix for plant family names in modern taxonomy. The genus name comes from the Classical Latin word solanum, referring to nightshades (especially Solanum nigrum), "probably from sol, 'sun', + -anum, neuter of -anus."[11]

Description

Illustration of Solanum dulcamara. 1. flower; 2. flower in longitudinal section, without the petals; 3. androecium; 4. ovary, in transverse section; 5. seed viewed from above; 6. seed in transverse section – note the curved embryo surrounding the endosperm; A. branch with leaves and flowers; B. stem with immature and mature fruit

Plants in the Solanaceae can take the form of herbs, shrubs, trees, vines and lianas, and sometimes epiphytes. They can be annuals, biennials, or perennials, upright or decumbent. Some have subterranean tubers. They do not have laticifers, nor latex, nor coloured saps. They can have a basal or terminal group of leaves or neither of these types. The leaves are generally alternate or alternate to opposed (that is, alternate at the base of the plant and opposed towards the inflorescence). The leaves can be herbaceous, leathery, or transformed into spines. The leaves are generally petiolate or subsessile, rarely sessile. They are frequently inodorous, but some are aromatic or fetid. The foliar lamina can be either simple or compound, and the latter can be either pinnatifid or ternate. The leaves have reticulated venation and lack a basal meristem. The laminae are generally dorsiventral and lack secretory cavities. The stomata are generally confined to one of a leaf's two sides; they are rarely found on both sides.

Floral diagram of the potato (Solanum tuberosum), Legend: 1 = sepals 2 = petals 3 = stamens 4 = superior ovary

The flowers are generally hermaphrodites, although some are monoecious, andromonoecious, or dioecious species (such as some Solanum or Symonanthus). Pollination is entomophilous. The flowers can be solitary or grouped into terminal, cymose, or axillary inflorescences. The flowers are medium-sized, fragrant (Nicotiana), fetid (Anthocercis), or inodorous. The flowers are usually actinomorphic, slightly zygomorphic, or markedly zygomorphic (for example, in flowers with a bilabial corolla in Schizanthus species). The irregularities in symmetry can be due to the androecium, to the perianth, or both at the same time. In the great majority of species, the flowers have a differentiated perianth with a calyx and corolla (with five sepals and five petals, respectively) an androecium with five stamens and two carpels forming a gynoecium with a superior ovary[12] (they are therefore referred to as pentamers and tetracyclic). The stamens are epipetalous and are typically present in multiples of four or five, most commonly four or eight. They usually have a hypogynous disk. The calyx is gamosepalous (as the sepals are joined forming a tube), with the (4)5(6) segments equal, it has five lobes, with the lobes shorter than the tube, it is persistent and often accrescent. The corolla usually has five petals that are also joined forming a tube. Flower shapes are typically rotate (wheel-shaped, spreading in one plane, with a short tube) or tubular (elongated cylindrical tube), campanulated or funnel-shaped.

The androecium has (2)(4)5(6) free stamens within it opposite sepals (they alternate with the petals). They are usually fertile or, in some cases (for example in Salpiglossideae) they have staminodes. In the latter case, there is usually either one staminode (Salpiglossis) or three (Schizanthus). The anthers touch on their upper end forming a ring, or they are completely free, dorsifixed, or basifixed with poricide dehiscence or through small longitudinal cracks. The stamen's filament can be filiform or flat. The stamens can be inserted inside the coralline tube or exserted. The plants demonstrate simultaneous microsporogenesis, the microspores are tetrad, tetrahedral, or isobilateral. The pollen grains are bicellular at the moment of dehiscence, usually open and angular.

The gynoecium is bicarpelar (rarely three- or five-locular) with a superior ovary and two locules, which may be secondarily divided by false septa, as is the case for Nicandreae and Datureae. The gynoecium is located in an oblique position relative to the flower's median plane. They have one style and one stigma; the latter is simple or bilobate. Each locule has one to 50 ovules that are anatropous or hemianatropous with axillar placentation. The development of the embryo sack can be the same as for Polygonum or Allium species. The embryo sack's nuclear poles become fused before fertilization. The three antipodes are usually ephemeral or persistent as in the case of Atropa. The fruit can be a berry as in the case of the tomato or wolfberry, or a dehiscent capsule as in Datura, or a drupe. The fruit has axial placentation. The capsules are normally septicidal or rarely loculicidal or valvate. The seeds are usually endospermic, oily (rarely starchy), and without obvious hairs. The seeds of most Solanaceae are round and flat, about 2–4 mm (0.079–0.157 in) in diameter. The embryo can be straight or curved, and has two cotyledons. Most species in the Solanaceae have 2n=24 chromosomes,[13] but the number may be a higher multiple of 12 due to polyploidy. Wild potatoes, of which there are about 200, are predominantly diploid (2 × 12 = 24 chromosomes), but triploid (3 × 12 = 36 chromosomes), tetraploid (4 × 12 = 48 chromosomes), pentaploid (5 × 12 = 60) and even hexaploid (6 × 12 = 72 chromosome) species or populations exist. The cultivated species Solanum tuberosum has 4 × 12 = 48 chromosomes. Some Capsicum species have 2 × 12 = 24 chromosomes, while others have 26 chromosomes.

Diversity of characteristics

Despite the previous description, the Solanaceae exhibit a large morphological variability, even in their reproductive characteristics. Examples of this diversity include:[14][15]

  • The number of carpels that form the gynoecium

In general, the Solanaceae have a gynoecium (the female part of the flower) formed of two carpels. However, Melananthus has a monocarpelar gynoecium, there are three or four carpels in Capsicum, three to five in Nicandra, some species of Jaborosa and Trianaea and four carpels in Iochroma umbellatum.

  • The number of locules in the ovary

The number of locules in the ovary is usually the same as the number of carpels. However, some species occur in which the numbers are not the same due to the existence of false septa (internal walls that subdivide each locule), such as in Datura and some members of the Lycieae (the genera Grabowskia and Vassobia).

  • Type of ovules and their number

The ovules are generally inverted, folded sharply backwards (anatropous), but some genera have ovules that are rotated at right angles to their stalk (campilotropous) as in Phrodus, Grabowskia or Vassobia), or are partially inverted (hemitropous as in Cestrum, Capsicum, Schizanthus and Lycium). The number of ovules per locule also varies from a few (two pairs in each locule in Grabowskia, one pair in each locule in Lycium) and very occasionally only one ovule is in each locule as for example in Melananthus.

  • The type of fruit

The fruits of the great majority of the Solanaceae are berries or capsules (including pyxidia) and less often drupes. Berries are common in the subfamilies Cestroideae, Solanoideae (with the exception of Datura, Oryctus, Grabowskia and the tribe Hyoscyameae) and the tribe Juanulloideae (with the exception of Markea). Capsules are characteristic of the subfamilies Cestroideae (with the exception of Cestrum) and Schizanthoideae, the tribes Salpiglossoideae and Anthocercidoideae, and the genus Datura. The tribe Hyoscyameae has pyxidia. Drupes are typical of the Lycieae tribe and in Iochrominae.[16]

Alkaloids

Alkaloids are nitrogenous organic substances produced by plants as a secondary metabolite and which have an intense physiological action on animals even at low doses. Solanaceae are known for having a diverse range of alkaloids. To humans, these alkaloids can be desirable, toxic, or both. The tropanes are the most well-known of the alkaloids found in the Solanaceae. The plants that contain these substances have been used for centuries as poisons. However, despite being recognized as poisons, many of these substances have invaluable pharmaceutical properties. Many species contain a variety of alkaloids that can be more or less active or poisonous, such as scopolamine, atropine, hyoscyamine, and nicotine. They are found in plants such as henbane (Hyoscyamus albus), belladonna (Atropa belladonna), jimson weed (Datura stramonium), mandrake (Mandragora autumnalis), tobacco, and others. Some of the main types of alkaloids are:

Chemical structure of solanine
  • Solanine: A toxic glycoalkaloid with a bitter taste, it has the formula C45H73NO15. It is formed by the alkaloid solanidine with a carbohydrate side chain. It is found in leaves, fruit, and tubers of various Solanaceae such as the potato and tomato. Its production is thought to be an adaptive defence strategy against herbivores. Substance intoxication from solanine is characterized by gastrointestinal disorders (diarrhoea, vomiting, abdominal pain) and neurological disorders (hallucinations and headache). The median lethal dose is between 2 and 5 mg/kg of body weight. Symptoms manifest 8 to 12 hours after ingestion. The amount of these glycoalkaloids in potatoes, for example, varies significantly depending on environmental conditions during their cultivation, the length of storage, and the variety. The average glycoalkaloid concentration is 0.075 mg/g of potato.[17] Solanine has occasionally been responsible for poisonings in people who ate berries from species such as Solanum nigrum or Solanum dulcamara, or green potatoes.[18][19]
Chemical structure of the tropanes.
Chemical structure of nicotine.
  • Nicotine: Nicotine (IUPAC nomenclature (S)-3-(1-methylpyrrolidin-2-yl) pyridine) is a pyrrolidine alkaloid produced in large quantities in the tobacco plant (Nicotiana tabacum). Edible Solanaceae such as eggplants, tomatoes, potatoes, and peppers also contain nicotine, but at concentrations 100,000 to 1,000,000 times less than tobacco.[26][27] Nicotine's function in a plant is to act as a defense against herbivores, as it is a very effective neurotoxin, in particular against insects. In fact, nicotine has been used for many years as an insecticide, though its use is currently being replaced by synthetic molecules derived from its structure. At low concentrations, nicotine acts as a stimulant in mammals, which causes the dependency in smokers. Like the tropanes, it acts on cholinergic neurons, but with the opposite effect (it is an agonist as opposed to an antagonist). It has a higher specificity for nicotinic acetylcholine receptors than other ACh proteins.
Chemical structure of capsaicin
  • Capsaicin: Capsaicin (IUPAC nomenclature 8-methyl-N-vanillyl-trans-6-nonenamide) is structurally different from nicotine and the tropanes. It is found in species of the genus Capsicum, which includes chilis and habaneros and it is the active ingredient that determines the Scoville rating of these spices. The compound is not noticeably toxic to humans. However, it stimulates specific pain receptors in the majority of mammals, specifically those related to the perception of heat in the oral mucosa and other epithelial tissues. When capsaicin comes into contact with these mucosae, it causes a burning sensation little different from a burn caused by fire. Capsaicin affects only mammals, not birds. Pepper seeds can survive the digestive tracts of birds; their fruit becomes brightly coloured once its seeds are mature enough to germinate, thereby attracting the attention of birds that then distribute the seeds. Capsaicin extract is used to make pepper spray, a useful deterrent against aggressive and peaceful mammals.

Distribution

Map showing the distribution of the Solanaceae throughout the world (light green areas)

Even though members of the Solanaceae are found on all continents except Antarctica, the greatest variety of species are found in Central America and South America. Centers of diversity also occur in Australia and Africa. Solanaceae occupy a great number of different ecosystems, from deserts to rainforests, and are often found in the secondary vegetation that colonizes disturbed areas. In general, plants in this family are of tropical and temperate distribution.

Plant host

The potato tuber moth (Phthorimaea operculella) is an oligophagous insect that prefers to feed on plants of the family Solanaceae, especially the potato plant (Solanum tuberosum). Female P. operculella use the leaves to lay their eggs and the hatched larvae will eat away at the mesophyll of the leaf. After feeding on the foliage, the larvae will then delve down and feed on the tubers and roots of the plant.[28]

Taxonomy

The following taxonomic synopsis of the Solanaceae, including subfamilies, tribes and genera, is based on the most recent molecular phylogenetics studies of the family:[3][4][29][30]

Cestroideae (Browallioideae)

Cestrum elegans, ( subfamily : Cestroideae ), a shrub used as an ornamental.
Browallia americana
Flower of Salpiglossis sinuata, Botanischer Garten Jena, Germany

This subfamily is characterised by the presence of pericyclic fibres, an androecium with four or five stamens, frequently didynamous. The basic chromosome numbers are highly variable, from x=7 to x=13. The subfamily consists of eight genera (divided into three tribes) and about 195 species distributed throughout the Americas. The genus Cestrum is the most important, as it contains 175 of the 195 species in the subfamily. The Cestreae tribe is unusual because it includes taxa with long chromosomes (from 7.21 to 11.511 µm in length), when the rest of the family generally possesses short chromosomes (for example between 1.5 and 3.52 µm in the Nicotianoideae)

Goetzeoideae

Goetzea elegans ( subfamily Goetzeoideae ) in bud and flower, South Miami, Florida United States.
Espadaea amoena ( subfamily Goetzeoideae ).

This subfamily is characterized by the presence of drupes as fruit and seeds with curved embryos and large fleshy cotyledons. The basic chromosome number is x=13. It includes four genera and five species distributed throughout the Greater Antilles. Some authors suggest their molecular data indicate the monotypic genera Tsoala Bosser & D'Arcy should be included in this subfamily, endemic to Madagascar, and Metternichia to the southeast of Brazil. Goetzeaceae Airy Shaw is considered as a synonym of this subfamily.[31]

Nicotianoideae

Tobacco inflorescence, Nicotiana tabacum
  • Anthocercideae G.Don: This tribe, endemic to Australia, contains 31 species in seven genera. Molecular phylogenetic studies of the tribe indicate it is the sister of Nicotiana, and the genera Anthocercis, Anthotroche, Grammosolen, and Symonanthus are monophyletic. Some characteristics are also thought to be derived from within the tribe, such as the unilocular stamens with semicircular opercula, bracteolate flowers, and berries as fruit.[32]
  • Nicotianeae tribe Dum.
    • Nicotiana L., genus widely distributed, with 52 American species, 23 Australian, and one African

Petunioideae

Nierembergia frutescens subfamily Petunioideae
Petunia exserta

Molecular phylogenetics indicates that Petunioideae is the sister clade of the subfamilies with chromosome number x=12 (Solanoideae and Nicotianoideae). They contain calistegins, alkaloids similar to the tropanes. The androecium is formed of four stamens (rarely five), usually with two different lengths. The basic chromosome number of this subfamily can be x=7, 8, 9 or 11. It consists of 13 genera and some 160 species distributed throughout Central and South America. Molecular data suggest the genera originated in Patagonia. Benthamiella, Combera, and Pantacantha form a clade that can be categorized as a tribe (Benthamielleae) that should be in the subfamily Goetzeoideae.

  • Benthamiella Speg., 12 species native to Patagonia
  • Bouchetia Dunal, three neotropical species
  • Brunfelsia L., around 45 species from the neotropics
  • Calibrachoa Cerv. ex La Llave & Lex., consists of 32 species from the neotropics. The morphological data suggest this genus should be included within the Petunia. However, the molecular and cytogenetic data indicate both should be kept separate. In fact, Calibrachoa has a basic chromosome number x=9, while that of Petunia is x=7.[33][34]
  • Combera Sandw., two species from Patagonia
  • Fabiana Ruiz & Pav., 15 species native to the Andes
  • Hunzikeria D'Arcy, three species from the southwest United States and Mexico
  • Leptoglossis Benth., seven species from western South America
  • Nierembergia Ruiz & Pav., 21 species from South America
  • Pantacantha Speg., monospecific genus from Patagonia
  • Petunia (Juss.) Wijsman, 18 species from South America
  • Plowmania Hunz. & Subils, monotypic genus from Mexico and Guatemala

Schizanthoideae

Zygomorphic flowers, with bilabiate corolla of Schizanthus pinnatus, a schizanthoidea ornamental

The Schizanthoideae include annual and biennial plants with tropane alkaloids, without pericyclic fibres, with characteristic hair and pollen grains. The flowers are zygomorphic. The androecium has two stamens and three staminodes, anther dehiscence is explosive. In terms of fruit type, the Schizanthoidae retain the plesiomorphic fruit form of the family Solanaceae, capsules, which rely on an anemochorous, abiotic form of dispersal. This is present in Schizanthoidae due both to the genetic constraints of early divergence (see below) as well as Schizanthus evolution and presence in open habitats.[35] The embryo is curved. The basic chromosome number is x=10. Schizanthus is a somewhat atypical genus among the Solanaceae due to its strongly zygomorphic flowers and basic chromosome number. Morphological and molecular data suggest Schizanthus is a sister genus to the other Solanaceae and diverged early from the rest, probably in the late Cretaceous or in the early Cenozoic, 50 million years ago.[29][30] The great diversity of flower types within Schizanthus has been the product of the species' adaptation to the different types of pollinators that existed in the Mediterranean, high alpine, and desert ecosystems then present in Chile and adjacent areas of Argentina.[36]

  • Schizanthus Ruiz & Pav., 12 species originating from Chile.

Schwenckioideae

Annual plants with pericyclic fibres, their flowers are zygomorphic, the androecium has four didynamous stamens or three staminodes; the embryo is straight and short. The basic chromosome number is x=12. It includes four genera and some 30 species distributed throughout South America.

  • Heteranthia Nees & Mart., one species from Brazil
  • Melananthus Walp., five species from Brazil, Cuba, and Guatemala
  • Protoschwenckia Soler , monotypic genus from Bolivia and Brazil, some molecular phylogenetic studies have suggested this genus has an uncertain taxonomic position within the subfamily
  • Schwenckia L., 22 species distributed throughout the neotropical regions of America

Solanoideae

Capsicum frutescens cultivar "tabasco", a solanoidea
Atropa belladonna ( Deadly Nightshade ) flower
Black Henbane (Hyoscyamus niger)
Solandra maxima flower
In the fruit of Physalis peruviana (Cape gooseberry), the persistent calyx surrounds the fruit.
Eriolarynx australis ( known formerly as Iochroma australe ) flower, cultivated plant, UBC Botanical Garden, British Columbia.
Solanum bonariense flower
Flower of Solanum betaceum (=Cyphomandra betacea)
  • Capsiceae Dumort
    • Capsicum L. includes 40 accepted neotropical species[37]
    • Lycianthes (Dunal) Hassler, some 200 species distributed throughout America and Asia
  • Datureae G.Don, two genera are perfectly differentiated at both the morphological and molecular levels, Brugmansia includes tree species, while Datura contains herbs or shrubs, the latter genus can be divided into three sections: Stramonium, Dutra and Ceratocaulis.[38] The monotypic genus Trompettia has recently been created to accommodate the Bolivian shrub formerly known as Iochroma cardenasianum - now known to belong to Datureae and not Physaleae as previously thought.[39]
  • Hyoscyameae Endl.
  • Jaboroseae Miers
    • Jaborosa Juss., genus that includes 23 species from South America.
  • Solandreae Miers
    • Subtribe Juanulloinae consists 10 genera of trees and epiphytic shrubs with a neotropical distribution .[40] Some of these genera (Dyssochroma, Merinthopodium and Trianaea) show a clear dependency on various species of bats both for pollination and dispersion of seeds.[41]
      • Dyssochroma Miers, two species from the south of Brazil
      • Hawkesiophyton Hunz. two species from South America
      • Juanulloa Ruiz & Pav., 11 species from South and Central America
      • Markea Rich., 9 species from South and Central America
      • Merinthopodium J. Donn. Sm. three species originating from South America
      • Poortmannia Drake, one species, from Colombia, Ecuador and Peru (South America)
      • Schultesianthus Hunz., eight neotropical species
      • Trianaea Planch. & Linden, six South American species
    • Subtribe Solandrinae, a monotypical subtribe, differs from Juanulloinae in that its embryos have incumbent cotyledons and semi-inferior ovaries.[40]
    • Solandra Sw., 10 species from the neotropical regions of America
  • Lycieae Hunz. has three genera of woody plants, which grow in arid or semiarid climates. The cosmopolitan genus Lycium is the oldest in the tribe and it has the greatest morphological variability.[42] Molecular phylogenetic studies suggest both Grabowskia and Phrodus should be included in the Lycium,[43] and this genus, along with Nolana and Sclerophylax, form a clade (Lyciina), which currently lacks a taxonomic category.[31] The red fleshy berries dispersed by birds are the main type of fruit in Lycium. The different types of fruit in this genus have evolved from the type of berry just mentioned to a drupe with a reduced number of seeds.[44]
    • Grabowskia Schltdl., three species from South America
    • Lycium L., 83 cosmopolitan species
    • Phrodus Miers, two species endemic to the north of Chile
  • Mandragoreae (Wettst.) Hunz. & Barboza tribe does not have a defined systematic position according to molecular phylogenetic studies.[31]
  • Nicandreae Wettst. is a tribe with two South American genera. Molecular phylogenetic studies indicate the genera are not interrelated nor are they related with other genera of the family, so their taxonomic position is uncertain.[31]
    • Exodeconus Raf., six species from western South America
    • Nicandra Adans, one species distributed throughout neotropical regions
  • Nolaneae Rchb. are mostly herbs and small shrubs with succulent leaves, they have very beautiful flowers that range from white to various shades of blue, their fruit is schizocarpal, giving rise to various nuts.
    • Nolana L., 89 species distributed throughout western South America
  • Physaleae Miers, is a large tribe that is the sister of Capsiceae.
    • Subtribe Iochrominae (Miers) Hunz., a clade within the Physaleae tribe. contains 37 species, mainly distributed in the Andes, assigned to six genera. The members of this subtribe are characterized by being woody shrubs or small trees with attractive tubular or rotated flowers. They also possess great floral diversity, containing every type is present in the family. Their flowers can be red, orange, yellow, green, blue, purple, or white. The corolla can be tubular to rotated, with a variation of up to eight times in the length of the tube between the various species.[45]
      • Acnistus Schott, one species distributed throughout the neotropics
      • Dunalia Kunth., five species from the Andes
      • Eriolarynx Hunz., three species from Argentina and Bolivia
      • Iochroma Benth., 24 species from the Andes
      • Saracha Ruiz & Pav., two species from the Andes.
      • Vassobia Rusby, two South American species
    • Physalinae (Miers) Hunz. , a monophyletic subtribe, contains 10 genera and includes herbs or woody shrubs with yellow, white, or purple solitary axillary flowers pollinated by bees. Once pollination occurs, the corolla falls and the calyx expands until it entirely covers the boll that is developing (the calyx is called accrescent). In many species, the calyx turns yellow or orange on maturity. The berries contain many greenish to yellow-orange seeds, often with red or purple highlights.[46]
      • Alkekengi Mill., monotypic genus; a Far East species formerly included in genus Physalis (Physalis alkekengi L.).
      • Brachistus Miers, three species from Mexico and Central America.
      • Chamaesaracha (A.Gray) Benth. & Hook., has 10 species from Mexico and Central America.
      • Darcyanthus, genus with just 1 species originating in Bolivia and Peru.
      • Leucophysalis Rydberg, includes 3 species from the south west of the United States and Mexico.
      • Margaranthus Schlecht., with 1 species from Mexico.
      • Oryctes S. Watson, monotypic genus from the south west of the United States.
      • Physalis L., the largest genus of the subtribe, with 85 species distributed through the tropical regions of the Americas and with 1 species in China.
      • Quincula Raf. with just 1 species from the south west of the United States and from Mexico.
      • Trozelia Raf. with 2 species from Ecuador and Peru.
      • Tzeltalia, genus segregated from Physalis, with 2 species distributed throughout Mexico and Guatemala.
      • Witheringia L' Heritier, genus with 15 species from neotropical regions.
    • Subtribe Salpichroinae, this is a subtribe of Physaleae that includes 16 American species distributed in 1 genera:
      • Nectouxia Kunth., monotypic genus that is endemic to Mexico.
      • Salpichroa Miers, genus with 15 species from the Andes and other regions of South America.
    • Subtribe Withaninae, is a subtribe of Physaleae with a broad distribution, including 9 genera:
      • Archiphysalis Kuang, with 3 species from China and Japan.
      • Athenaea Sendtn., which includes 7 species from Brazil.
      • Aureliana Sendtn., with 5 species from South America.
      • Cuatresia Hunz., with 11 neotropical species. Molecular studies indicate that this genus, along with Deprea and Larnax has an uncertain taxonomic position.[31]
      • Deprea Raf., with 6 neotropical species.
      • Larnax Miers, many taxonomists consider it to be a synonym for Deprea, contains 22 species native to the Andes.
      • Mellissia Hook. f., monotypic genus from Saint Helena with the common name Saint Helena boxwood (genus recently subsumed in Withania)
      • Nothocestrum A.Gray with 4 species from Hawaii.
      • Physaliastrum Makino, with 10 Asiatic species (genus recently subsumed in Withania).
      • Tubocapsicum (Wettst.) Makino, with just one species endemic to China.
      • Withania Pauq., with 10 species native to the Canary Islands, Africa and Nepal.
  • Tribe Solaneae. The genera Cyphomandra Sendtn., Discopodium Hochst., Normania Lowe, Triguera Cav. and Lycopersicum Mill have been transferred to Solanum. The subtribe is therefore composed of two genera:[31]
    • Jaltomata Schltdl., which contains 50 neotropical species.
    • Solanum L., the largest genus in the family and one of the broadest of the angiosperms, with 1,328 species distributed across the whole world.

Incertae sedis

Sclerophylax kurtzii.

The following genera have not yet been placed in any of the recognized subfamilies within the solanaceas (incertae sedis).

Genera and distribution of species

Flowers and foliage of Cestrum parqui.

The Solanaceae contain 98 genera and some 2,700 species. Despite this immense richness of species, they are not uniformly distributed between the genera. The eight most important genera contain more than 60% of the species, as shown in the table below. Solanum – the genus that typifies the family - includes nearly 50% of the total species of the solanaceas.

Genera Approximate number of species
Solanum 1,330
Lycianthes 200
Cestrum 150
Nolana 89
Physalis 85
Lycium 85
Nicotiana 76
Brunfelsia 45
Estimated number of species in the family 2,700

Economic importance

Pink, double-flowered Brugmansia cultivar
Triple-flowered Datura metel 'Fastuosa': ancient cultivar created from Datura innoxia by Pre-Columbian horticulturalists in the Greater Antilles
Petunia × atkinsiana, a herbaceous annual commonly cultivated as a summer bedding plant

The family Solanaceae contains such important food species as the potato (Solanum tuberosum), the tomato (Solanum lycopersicum), the pepper (Capsicum annuum) and the aubergine or eggplant (Solanum melongena). Nicotiana tabacum, originally from South America, is now cultivated throughout the world to produce tobacco. Many solanaceas are important weeds in various parts of the world. Their importance lies in the fact that they can host pathogens or diseases of the cultivated plants, therefore their presence increases the loss of yield or the quality of the harvested product. An example of this can be seen with Acnistus arborescens and Browalia americana that host thrips, which cause damage to associated cultivated plants,[47] and certain species of Datura that play host to various types of virus that are later transmitted to cultivated solanaceas.[48] Some species of weeds such as, Solanum mauritianum in South Africa represent such serious ecological and economic problems that studies are being carried out with the objective of developing a biological control through the use of insects.[49]

A wide variety of plant species and their cultivars belonging to the Solanaceae are grown as ornamental trees, shrubs, annuals and herbaceous perennials[50] Examples include Brugmansia x candida ("Angel's Trumpet") grown for its large pendulous trumpet-shaped flowers, or Brunfelsia latifolia, whose flowers are very fragrant and change colour from violet to white over a period of 3 days. Other shrub species that are grown for their attractive flowers are Lycianthes rantonnetii (Blue Potato Bush or Paraguay Nightshade) with violet-blue flowers and Nicotiana glauca ("Tree Tobacco") Other solanaceous species and genera that are grown as ornamentals are the petunia (Petunia × hybrida), Lycium, Solanum, Cestrum, Calibrachoa × hybrida and Solandra. There is even a hybrid between Petunia and Calibrachoa (which constitutes a new nothogenus called × Petchoa G. Boker & J. Shaw) that is being sold as an ornamental.[51] Many other species, in particular those that produce alkaloids, are used in pharmacology and medicine (Nicotiana, Hyoscyamus, and Datura).[8]

Solanaceae and the genome

Many of the species belonging to this family, among them tobacco and the tomato, are model organisms that are used for research into fundamental biological questions. One of the aspects of the solanaceas' genomics is an international project that is trying to understand how the same collection of genes and proteins can give rise to a group of organisms that are so morphologically and ecologically different. The first objective of this project was to sequence the genome of the tomato. In order to achieve this each of the 12 chromosomes of the tomato's haploid genome was assigned to different sequencing centres in different countries. So chromosomes 1 and 10 were sequenced in the United States, 3 and 11 in China, 2 in Korea, 4 in Britain, 5 in India, 7 in France, 8 in Japan, 9 in Spain and 12 in Italy. The sequencing of the mitochondrial genome was carried out in Argentina and the chloroplast genome was sequenced in the European Union.[52][53]

See also

References

  1. "Solanaceae Juss., nom. cons". Germplasm Resources Information Network. United States Department of Agriculture. 2007-04-12. Retrieved 2009-04-16.
  2. Lee, M. R. (June 2006). "The Solanaceae: foods and poisons". Journal of the Royal College of Physicians of Edinburgh. 36 (2): 162–169. ISSN 1478-2715. PMID 17153152.
  3. Olmstead, R. G.; Sweere, J. A.; Spangler, R. E.; Bohs, L.; Palmer, J. D. (1999). "Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA" (PDF). In Nee, M.; Symon, D. E.; Lester, R. N.; Jessop, J. P. (eds.). Solanaceae IV: advances in biology and utilization. The Royal Botanic Gardens. pp. 111–37.
  4. Olmstead, R.G.; Bohs, L. (2007). "A Summary of molecular systematic research in Solanaceae: 1982-2006". Acta Horticulturae. 745 (745): 255–268. CiteSeerX 10.1.1.561.2269. doi:10.17660/ActaHortic.2007.745.11.
  5. Wilf, Peter; Carvalho, Mónica R.; Gandolfo, María A.; Cúneo, N. Rubén (2017-01-06). "Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae". Science. 355 (6320): 71–75. Bibcode:2017Sci...355...71W. doi:10.1126/science.aag2737. ISSN 0036-8075. PMID 28059765. S2CID 206651318.
  6. "Alkekengi officinarum - Species Page - NYFA: New York Flora Atlas". newyork.plantatlas.usf.edu. Retrieved 2022-08-18.
  7. "Plant database entry for Chinese Lantern (Alkekengi officinarum) with 35 images, 2 comments, and 26 data details". garden.org. Retrieved 2022-08-18.
  8. Fatur, Karsten (June 2020). ""Hexing Herbs" in Ethnobotanical Perspective: A Historical Review of the Uses of Anticholinergic Solanaceae Plants in Europe". Economic Botany. 74 (2): 140–158. doi:10.1007/s12231-020-09498-w. ISSN 0013-0001. S2CID 220844064.
  9. Niedbała, Gniewko; Niazian, Mohsen; Sabbatini, Paolo (2021). "Modeling Agrobacterium-Mediated Gene Transformation of Tobacco (Nicotiana tabacum)—A Model Plant for Gene Transformation Studies". Frontiers in Plant Science. 12: 695110. doi:10.3389/fpls.2021.695110. ISSN 1664-462X. PMC 8370025. PMID 34413865.
  10. Gerats, Tom; Vandenbussche, Michiel (2005-05-01). "A model system for comparative research: Petunia". Trends in Plant Science. Special Issue: Plant model systems. 10 (5): 251–256. doi:10.1016/j.tplants.2005.03.005. ISSN 1360-1385. PMID 15882658.
  11. Merriam-Webster, Merriam-Webster's Unabridged Dictionary, Merriam-Webster, archived from the original on 2020-05-25, retrieved 2016-07-25.
  12. Yasin J. Nasir. "Solanaceae". Flora of Pakistan.
  13. Fujii, Kenjiro (1934). Cytologia. Botanical Institute. p. 281.
  14. Hunziker, A.T. 1979: South American Solanaceae: a synoptic review. In: D'ARCY, W.G., 1979: The Biology and Taxonomy of the Solanaceae. Linn. Soc. Symp. Ser. 7: p 48-85. Linnean Soc. & Academic Press; London.
  15. Balken, J.A. THE PLANT FAMILY SOLANACEAE: FRUITS IN SOLANACEAE "Archived copy". Archived from the original on 2016-03-09. Retrieved 2013-08-09.{{cite web}}: CS1 maint: archived copy as title (link)
  16. Armando T. Hunziker: The Genera of Solanaceae. A.R.G. Gantner Verlag K.G., Ruggell, Liechtenstein 2001. ISBN 3-904144-77-4
  17. Zeiger, E. 1998. Solanine and Chaconine. Review of Toxicological Literature. Integrated Laboratory Systems, USA."Archived copy" (PDF). Archived from the original (PDF) on 2011-11-15. Retrieved 2011-11-15.{{cite web}}: CS1 maint: archived copy as title (link)
  18. "Solanine poisoning". Br Med J. 2 (6203): 1458–1459. 1979-12-08. doi:10.1136/bmj.2.6203.1458-a. PMC 1597169. PMID 526812.
  19. Alexander RF, Forbes GB, Hawkins ES (1948-09-11). "A Fatal Case of Solanine Poisoning". Br Med J. 2 (4575): 518. doi:10.1136/bmj.2.4575.518. PMC 2091497. PMID 18881287.
  20. Griffin WJ, Lin GD (March 2000). "Chemotaxonomy and geographical distribution of tropane alkaloids". Phytochemistry. 53 (6): 623–637. Bibcode:2000PChem..53..623G. doi:10.1016/S0031-9422(99)00475-6. PMID 10746874.
  21. Sneden, A. The tropane alkaloids. Medicinal Chemistry and Drug Design. Virginia Commonwealth University "Archived copy" (PDF). Archived from the original (PDF) on 2007-09-27. Retrieved 2007-09-27.{{cite web}}: CS1 maint: archived copy as title (link)
  22. Evans, W.C. 1979. Tropane alkaloids of the Solanaceae. En: HAWKES, LESTER and SHELDING (eds.). The biology and taxonomy of the Solanaceae. Linn. Soc. Symp. Ser. 7:241-254. Linnean Soc. & Academic Press., London.
  23. Matsuda, Jun; Okabe, Souichi; Hashimoto, Takashi; Yamada, Yasuyuki (1991). "Molecular cloning of hyoscyamine 6β-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger". The Journal of Biological Chemistry. 266 (15): 9460–9464. doi:10.1016/S0021-9258(18)92843-7. PMID 2033047.
  24. Rocha, Pedro; Stenzel, Olaf; Parr, Adrian; Walton, Nicholas; Christou, Paul; Dräger, Birgit; Leech, Mark J (June 2002). "Functional expression of tropinone reductase I (trI) and hyoscyamine-6β-hydroxylase (h6h) from Hyoscyamus niger in Nicotiana tabacum". Plant Science. 162 (6): 905–913. doi:10.1016/S0168-9452(02)00033-X.
  25. Cardillo, Alejandra B.; Giulietti, Ana M.; Marconi, Patricia L. (June 2006). "Analysis and sequencing of h6hmRNA, last enzyme in the tropane alkaloids pathway from anthers and hairy root cultures of Brugmansia candida (Solanaceae)". Electronic Journal of Biotechnology. 9 (3). doi:10.2225/vol9-issue3-fulltext-15.
  26. Siegmund, Barbara; Leitner, Erich; Pfannhauser, Werner (1999-07-23). "Determination of the Nicotine Content of Various Edible Nightshades (Solanaceae) and Their Products and Estimation of the Associated Dietary Nicotine Intake". J. Agric. Food Chem. 47 (8): 3113–3120. doi:10.1021/jf990089w. PMID 10552617. Retrieved 2017-04-25.
  27. Moldoveanu, Serban C.; Scott, Wayne A.; Lawson, Darlene M. (2016-04-01). "Nicotine Analysis in Several Non-Tobacco Plant Materials". Beiträge zur Tabakforschung International/Contributions to Tobacco Research. 27 (2): 54–59. doi:10.1515/cttr-2016-0008. ISSN 1612-9237. S2CID 155096089. Retrieved 2017-05-05.
  28. Varela, L. G.; Bernays, E. A. (1988-07-01). "Behavior of newly hatched potato tuber moth larvae,Phthorimaea operculella Zell. (Lepidoptera: Gelechiidae), in relation to their host plants". Journal of Insect Behavior. 1 (3): 261–275. doi:10.1007/BF01054525. ISSN 0892-7553. S2CID 19062069.
  29. Olmstead, Richard G.; Palmer, Jeffrey D. (1992). "A Chloroplast DNA Phylogeny of the Solanaceae: Subfamilial Relationships and Character Evolution". Annals of the Missouri Botanical Garden. 79 (2): 346–360. doi:10.2307/2399773. JSTOR 2399773.
  30. Martins, Talline R.; Barkman, Todd J. (2005). "Reconstruction of Solanaceae Phylogeny Using the Nuclear Gene SAMT". Systematic Botany. 30 (2): 435–447. doi:10.1600/0363644054223675. JSTOR 25064071. S2CID 85679774.
  31. Olmstead, R.G.; Bohs, L. (2007). "A Summary of molecular systematic research in Solanaceae: 1982-2006". Acta Horticulturae. 745 (745): 255–268. CiteSeerX 10.1.1.561.2269. doi:10.17660/ActaHortic.2007.745.11.
  32. Garcia, Vicente F.; Olmstead, Richard G. (June 2003). "Phylogenetics of Tribe Anthocercideae (Solanaceae) Based on ndhF and trnL/F Sequence Data". Systematic Botany. 28 (3): 609–615. doi:10.1043/02-52.1 (inactive 1 August 2023). JSTOR 25063900.{{cite journal}}: CS1 maint: DOI inactive as of August 2023 (link)
  33. Ando, Toshio; Kokubun, Hisashi; Watanabe, Hitoshi; Tanaka, Norio; Yukawa, Tomohisa; Hashimoto, Goro; Marchesi, Eduardo; Suárez, Enrique; Basualdo, Isabel L. (2005). "Phylogenetic Analysis of Petunia sensu Jussieu (Solanaceae) using Chloroplast DNA RFLP". Annals of Botany. 96 (2): 289–297. doi:10.1093/aob/mci177. PMC 4246877. PMID 15944177.
  34. Mishiba, Kei-Ichiro; Ando, Toshio; Mii, Masahiro; Watanabe, Hitoshi; Kokubun, Hisashi; Hashimoto, Goro; Marchesi, Eduardo (2000). "Nuclear DNA Content as an Index Character Discriminating Taxa in the Genus Petunia sensu Jussieu (Solanaceae)". Annals of Botany. 85 (5): 665–673. doi:10.1006/anbo.2000.1122.
  35. Knapp, S (2002). "Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae". Journal of Experimental Botany. 53 (377): 2001–2022. doi:10.1093/jxb/erf068. PMID 12324525.
  36. Pérez, Fernanda; Arroyo, Mary T. K.; Medel, Rodrigo; Hershkovitz, Mark A. (2006). "Ancestral reconstruction of flower morphology and pollination systems in Schizanthus (Solanaceae)". American Journal of Botany. 93 (7): 1029–1038. doi:10.3732/ajb.93.7.1029. PMID 21642168.
  37. "The Plant List, Atropa". Royal Botanic Garden, Kew.
  38. Mace, E. S.; Gebhardt, C. G.; Lester, R. N. (1999). "AFLP analysis of genetic relationships in the tribe Datureae (Solanaceae)". Theoretical and Applied Genetics. 99 (3–4): 634–641. doi:10.1007/s001220051278. PMID 22665199. S2CID 30782826.
  39. Dupin, Julia; Smith, Stacey D (2017). "Phylogenetics of Datureae (Solanaceae), including description of the new genus Trompettia and re-circumscription of the tribe". Taxon. 67 (2): 359–375. doi:10.12705/672.6.
  40. Knapp, Sandra; Persson, Viveca; Blackmore, Stephen (1997). "A Phylogenetic Conspectus of the Tribe Juanulloeae (Solanaceae)". Annals of the Missouri Botanical Garden. 84 (1): 67–89. doi:10.2307/2399954. JSTOR 2399954.
  41. Sazima, M.; Buzato, S; Sazima, I (2003). "Dyssochroma viridiflorum (Solanaceae): A Reproductively Bat-dependent Epiphyte from the Atlantic Rainforest in Brazil". Annals of Botany. 92 (5): 725–730. doi:10.1093/aob/mcg190. PMC 4244854. PMID 14500325.
  42. Bernardello, Luis M. (1987). "Comparative Floral Morphology in Lycieae (Solanaceae)". Brittonia. 39 (1): 112–129. doi:10.2307/2806983. JSTOR 2806983. S2CID 84167107.
  43. Levin, Rachel A.; Miller, Jill S. (2005). "Relationships within tribe Lycieae (Solanaceae): Paraphyly of Lycium and multiple origins of gender dimorphism". American Journal of Botany. 92 (12): 2044–2053. doi:10.3732/ajb.92.12.2044. JSTOR 4125537. PMID 21646122.
  44. Bernardello, L.; Chiang-Cabrera, F. (1998). "A cladistic study on the American species of Lycium (Solanaceae) based on morphological variation". In Fortunato, Renée H; Bacigalupo, Nélida M (eds.). Proceedings of the VI Congreso Latinoamericano de Botánica, Mar del Plata, Argentina, 2-8 October, 1994. Monographs in Systematic Botany from the Missouri Botanical Garden. Missouri Botanical Garden Press. pp. 33–46. ISBN 978-0-915279-58-6.
  45. Smith, Stacey DeWitt; Baum, David A. (2006). "Phylogenetics of the florally diverse Andean clade Iochrominae (Solanaceae)". American Journal of Botany. 93 (8): 1140–1153. doi:10.3732/ajb.93.8.1140. JSTOR 4122802. PMID 21642180.
  46. Whitson, Maggie; Manos, Paul S. (2005). "Untangling Physalis (Solanaceae) from the Physaloids: A Two-Gene Phylogeny of the Physalinae". Systematic Botany. 30 (1): 216–230. doi:10.1600/0363644053661841. JSTOR 25064051. S2CID 86411770.
  47. Masis, C. & Madrigal, R. 1994. Lista preliminar de malezas hospedantes de Thrips (Thysanoptera) que dañan al Chrysanthemum morifolium en el valle central de Costa Rica. Agronomía Costarricense 18(1): 99-101. 1994
  48. Ormeño, J., Sepúlveda R., Rojas, R. Malezas del género Datura como factor epidemiológico del virus del mosaico de la alfalfa (amv), virus del mosaico del pepino (cmv) y virus y de la papa (pvy) en Solanáceas cultivadas. Agricultura técnica Vol. 66, Nº. 4, 2006, 333-341 Summary in Spanish
  49. Pedrosa-Macedo, J., Olckers, T. & Vitorino, M. 2003. Phytophagous arthropods associated with Solanum mauritianum Scopoli (Solanaceae) in the first Plateau of Paraná, Brazil: a cooperative project on biological control of weeds between Brazil and South Africa. Neotrop. Entomol. 32: 519-522. Article in English, with a summary in Portuguese
  50. Arboles ornamentales cultivados en España. Solanáceas
  51. Shaw, J. 2007. A new hybrid genus for Calibrachoa × Petunia (Solanaceae). HANBURYANA 2: 50–51
  52. "International Tomato Sequencing Project Home".
  53. "International Solanaceae Genomics Project (SOL), Systems Approach to Diversity and Adaptation".

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.