Oceanus (Titan orbiter)

Oceanus is a NASA/JPL orbiter mission concept proposed in 2017 for the New Frontiers mission #4, but it was not selected for development. If selected at some future opportunity, Oceanus would travel to Saturn's moon Titan to assess its habitability.[1] Studying Titan would help understand the early Earth and exoplanets which orbit other stars. The mission is named after Oceanus, the Greek god of oceans.

Oceanus
Overview
Mission typeTitan orbiter
OperatorNASA
Spacecraft properties
ManufacturerLockheed Martin
Solar array manufacturerOrbital ATK
Mission managementNASA / JPL
Start of mission
Expected flight time10 years
Science operations4 years
Instruments
Mass Spectrometer
Infrared Camera
Radar Altimeter
Radio Science
New Frontiers Program

Mission overview

Titan is a world of two oceans. One ocean is on the surface and consists of mainly liquid methane (CH
4
) and ethane (C
2
H
6
). The second ocean is under the surface and is made up of brine. Titan is a moon of Saturn but Titan is a large moon that is comparable in size to many planets. Titan is about the size of Mercury and about 40% the size of Earth. Ancient Earth may have had a methane-rich atmosphere with a reducing chemistry like Titan does today. By observing Titan's organic processes at work, Oceanus could help understand the role of organic haze in the early Earth.[2] Oceanus would explore Titan and help understand habitability across the Universe.

Oceanus was proposed to launch in February 2024 with a 10-year flight time to Titan. The spacecraft would spend two years orbiting Saturn and flying by Titan which would be followed by two years in a circular Titan orbit. The spacecraft would be powered by solar panels. A small lake probe may also be considered for this mission.[3]

Animation of methane clouds on the surface of Titan
Methane clouds on the surface of Titan

Abiotic organic synthesis occurs high in Titan's atmosphere, and a vast water ocean lies far beneath the icy crust, setting up possible chemistry and environment for abiogenesis and potential habitable niches for microorganisms. Oceanus would conduct its science investigations with a multistage mass spectrometer, an infrared camera that sees through the atmosphere,[1] and a radar altimeter with great vertical resolution.

Oceanus is led by Christophe Sotin, the chief scientist for Solar System exploration at NASA's Jet Propulsion Laboratory in Pasadena, California.[4]

Objectives

Titan Infrared View
Infrared view of Titan

Oceanus objectives are to reveal Titan's organic chemistry, geology, gravity, topography, collect 3D reconnaissance data, catalog the organics and determine where they may interact with liquid water.[5]

Titan has the basic ingredients for habitability: water, energy, and organic molecules. On a 4-year global exploration, Oceanus would characterize Titan's habitability globally, the photochemical synthesis of organics in the upper atmosphere, and determine places where they could potentially mix with liquid water.

Proposed development

The mission would be managed by NASA/JPL. JPL would also build parts of the radar and camera, and provide a mass spectrometer. The spacecraft would be developed by Lockheed Martin and derived from their proven central core cylinder designs. This configuration has been successfully applied on Mars Reconnaissance Orbiter, Juno, MAVEN, and OSIRIS-REx. The spacecraft would use Ultraflex solar arrays made by Orbital ATK. The Italian Space Agency (ASI) and its contractor Thales would supply the digital portion of the radar altimeter and parts of the telecommunications system.

On 20 November 2017 NASA selected two other proposals for additional concept studies: Comet Astrobiology Exploration Sample Return (CAESAR), and Dragonfly).[6] Had Oceanus been selected, it would have launched in 2024.[7][8][9]

Science instruments

There are three science instruments on Oceanus plus radio science measurements:

  1. T-Mass is a multistage quadrupole ion-trap mass spectrometer which would investigate organics in the Titan atmosphere.
  2. T-Cam is an infrared camera that would see through the infrared windows in Titan's atmosphere to be able to image Titan surface despite the atmospheric haze.
  3. T-Alt is a radar altimeter which would help to establish Titan's topography and, jointly with radio science observations, would allow accurate ocean measurements. T-Alt, jointly with T-Cam, will allow the scientists to assess how the organic material is transported on the surface and where are the possible locations where mixing between water and organics could take place.

Science team members

The Principal Investigator of the mission is Christophe Sotin (JPL), his Deputy is Alexander Hayes (Cornell University), the Project Scientist is Michael Malaska (JPL) and the legacy Project Scientist is Julie Castillo-Rogez. The Science Team come from JH APL, Lockheed Martin, JPL, ASI, Caltech, Cornell University, MIT, SWRI, University of Arizona, USGS, PSI, UCSC, University of Idaho, and several foreign universities.

See also

References

  1. Sotin, C., Hayes, A., Malaska, M., Nimmo, F., Trainer, M. D., Tortora, P.. (2017). "OCEANUS: A New Frontiers orbiter to study Titan’s potential habitability." 19th EGU General Assembly, EGU2017, proceedings from the conference held 23–28 April 2017 in Vienna, Austria., p.10958
  2. Arney, G., Meadows, V., Domagal-Goldman, S., Deming, D., Robinson, T. D., Tovar, G., Wolf, E., and Schwieterman, E. (2016). "Pale orange dots: The impact of organic haze on the habitability and detectability of earthlike exoplanets." In AAS/Division for Planetary Sciences Meeting Abstracts, volume 48
  3. Short Course on Ocean Worlds, International Planetary Probe Workshop, The Hague, Netherlands, June 10–11, 2017
  4. Chang, Kenneth (15 September 2017). "Back to Saturn? Five Missions Proposed to Follow Cassini". The New York Times. Retrieved 2017-09-18.
  5. Tortora, P., Zannoni, M., Nimmo, F., Mazarico, E., Iess, L., Sotin, C., Hayes, A., Malaska, M. (2017) “Titan gravity investigation with the Oceanus mission.” 19th EGU General Assembly, EGU2017, proceedings from the conference held 23–28 April 2017 in Vienna, Austria., p.17876
  6. Glowatz, Elana (20 December 2017). "NASA's New Frontier Mission Will Search For Alien Life Or Reveal The Solar System's History". IB Times.
  7. Foust, Jeff (January 8, 2016). "NASA Expands Frontiers of Next New Frontiers Competition". Space News. Retrieved January 20, 2016.
  8. Clark, Stephen (September 7, 2016). "NASA official says new mission selections on track despite InSight woes". Spaceflight Now. Retrieved September 8, 2016.
  9. New Frontiers fourth announcement of opportunity. NASA, January 6, 2016.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.