Progressively measurable process

In mathematics, progressive measurability is a property in the theory of stochastic processes. A progressively measurable process, while defined quite technically, is important because it implies the stopped process is measurable. Being progressively measurable is a strictly stronger property than the notion of being an adapted process.[1] Progressively measurable processes are important in the theory of Itô integrals.

Definition

Let

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): (\Omega ,{\mathcal {F}},\mathbb {P} ) be a probability space;
  • be a measurable space, the state space;
  • be a filtration of the sigma algebra ;
  • be a stochastic process (the index set could be or instead of );
  • be the Borel sigma algebra on .

The process is said to be progressively measurable[2] (or simply progressive) if, for every time , the map defined by is -measurable. This implies that is -adapted.[1]

A subset is said to be progressively measurable if the process is progressively measurable in the sense defined above, where is the indicator function of . The set of all such subsets form a sigma algebra on , denoted by , and a process is progressively measurable in the sense of the previous paragraph if, and only if, it is -measurable.

Properties

  • It can be shown[1] that , the space of stochastic processes for which the Itô integral
with respect to Brownian motion is defined, is the set of equivalence classes of -measurable processes in .
  • Every adapted process with left- or right-continuous paths is progressively measurable. Consequently, every adapted process with càdlàg paths is progressively measurable.[1]
  • Every measurable and adapted process has a progressively measurable modification.[1]

References

  1. Karatzas, Ioannis; Shreve, Steven (1991). Brownian Motion and Stochastic Calculus (2nd ed.). Springer. pp. 4–5. ISBN 0-387-97655-8.
  2. Pascucci, Andrea (2011). "Continuous-time stochastic processes". PDE and Martingale Methods in Option Pricing. Bocconi & Springer Series. Springer. p. 110. doi:10.1007/978-88-470-1781-8. ISBN 978-88-470-1780-1. S2CID 118113178.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.