Uniform tiling symmetry mutations

In geometry, a symmetry mutation is a mapping of fundamental domains between two symmetry groups.[1] They are compactly expressed in orbifold notation. These mutations can occur from spherical tilings to Euclidean tilings to hyperbolic tilings. Hyperbolic tilings can also be divided between compact, paracompact and divergent cases.

Example *n32 symmetry mutations
Spherical tilings (n = 3..5)

*332

*432

*532
Euclidean plane tiling (n = 6)

*632
Hyperbolic plane tilings (n = 7...∞)

*732

*832

... *∞32

The uniform tilings are the simplest application of these mutations, although more complex patterns can be expressed within a fundamental domain.

This article expressed progressive sequences of uniform tilings within symmetry families.

Mutations of orbifolds

Orbifolds with the same structure can be mutated between different symmetry classes, including across curvature domains from spherical, to Euclidean to hyperbolic. This table shows mutation classes.[1] This table is not complete for possible hyperbolic orbifolds.

Orbifold Spherical Euclidean Hyperbolic
o - o -
pp 22, 33 ... ∞∞ -
*pp *22, *33 ... *∞∞ -
p* 2*, 3* ... ∞* -
2×, 3× ... ∞×
** - ** -
- -
×× - ×× -
ppp 222 333 444 ...
pp* - 22* 33* ...
pp× - 22× 33×, 44× ...
pqq 222, 322 ... , 233 244 255 ..., 433 ...
pqr 234, 235 236 237 ..., 245 ...
pq* - - 23*, 24* ...
pq× - - 23×, 24× ...
p*q 2*2, 2*3 ... 3*3, 4*2 5*2 5*3 ..., 4*3, 4*4 ..., 3*4, 3*5 ...
*p* - - *2* ...
*p× - - *2× ...
pppp - 2222 3333 ...
pppq - - 2223...
ppqq - - 2233
pp*p - - 22*2 ...
p*qr - 2*22 3*22 ..., 2*32 ...
*ppp *222 *333 *444 ...
*pqq *p22, *233 *244 *255 ..., *344...
*pqr *234, *235 *236 *237..., *245..., *345 ...
p*ppp - - 2*222
*pqrs - *2222 *2223...
*ppppp - - *22222 ...
...

*n22 symmetry

Regular tilings

Family of regular hosohedra · *n22 symmetry mutations of regular hosohedral tilings: nn
Space SphericalEuclidean
Tiling name (Monogonal)
Henagonal hosohedron
Digonal hosohedron (Triangular)
Trigonal hosohedron
(Tetragonal)
Square hosohedron
Pentagonal hosohedron Hexagonal hosohedron Heptagonal hosohedron Octagonal hosohedron Enneagonal hosohedron Decagonal hosohedron Hendecagonal hosohedron Dodecagonal hosohedron ... Apeirogonal hosohedron
Tiling image ...
Schläfli symbol {2,1}{2,2}{2,3}{2,4}{2,5}{2,6}{2,7}{2,8}{2,9}{2,10}{2,11}{2,12}...{2,∞}
Coxeter diagram ...
Faces and edges 123456789101112...
Vertices 2...2
Vertex config. 22.223242526272829210211212...2
Family of regular dihedra · *n22 symmetry mutations of regular dihedral tilings: nn
Space SphericalEuclidean
Tiling name (Hengonal)
Monogonal dihedron
Digonal dihedron (Triangular)
Trigonal dihedron
(Tetragonal)
Square dihedron
Pentagonal dihedron Hexagonal dihedron ... Apeirogonal dihedron
Tiling image ...
Schläfli symbol {1,2}{2,2}{3,2}{4,2}{5,2}{6,2}...{∞,2}
Coxeter diagram ...
Faces 2 {1}2 {2}2 {3}2 {4}2 {5}2 {6}...2 {∞}
Edges and vertices 123456...
Vertex config. 1.12.23.34.45.56.6...∞.∞

Prism tilings

*n22 symmetry mutations of uniform prisms: n.4.4
Space Spherical Euclidean
Tiling
Config. 3.4.4 4.4.4 5.4.4 6.4.4 7.4.4 8.4.4 9.4.4 10.4.4 11.4.4 12.4.4 ...∞.4.4

Antiprism tilings

*n22 symmetry mutations of antiprism tilings: Vn.3.3.3
Space Spherical Euclidean
Tiling
Config. 2.3.3.3 3.3.3.3 4.3.3.3 5.3.3.3 6.3.3.3 7.3.3.3 8.3.3.3 ....3.3.3

*n32 symmetry

Regular tilings

*n32 symmetry mutation of regular tilings: {3,n}
Spherical Euclid. Compact hyper. Paraco. Noncompact hyperbolic
3.3 33 34 35 36 37 38 3 312i 39i 36i 33i
*n32 symmetry mutation of regular tilings: {n,3}
Spherical Euclidean Compact hyperb. Paraco. Noncompact hyperbolic
{2,3} {3,3} {4,3} {5,3} {6,3} {7,3} {8,3} {∞,3} {12i,3} {9i,3} {6i,3} {3i,3}

Truncated tilings

*n32 symmetry mutation of truncated tilings: t{n,3}
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paraco. Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
[12i,3] [9i,3] [6i,3]
Truncated
figures
Symbol t{2,3} t{3,3} t{4,3} t{5,3} t{6,3} t{7,3} t{8,3} t{,3} t{12i,3} t{9i,3} t{6i,3}
Triakis
figures
Config. V3.4.4 V3.6.6 V3.8.8 V3.10.10 V3.12.12 V3.14.14 V3.16.16 V3.∞.∞
*n32 symmetry mutation of truncated tilings: n.6.6
Sym.
*n42
[n,3]
Spherical Euclid. Compact Parac. Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
[12i,3] [9i,3] [6i,3]
Truncated
figures
Config. 2.6.6 3.6.6 4.6.6 5.6.6 6.6.6 7.6.6 8.6.6 .6.6 12i.6.6 9i.6.6 6i.6.6
n-kis
figures
Config. V2.6.6 V3.6.6 V4.6.6 V5.6.6 V6.6.6 V7.6.6 V8.6.6 V.6.6 V12i.6.6 V9i.6.6 V6i.6.6

Quasiregular tilings

Quasiregular tilings: (3.n)2
Sym.
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paraco. Noncompact hyperbolic
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
p6m
*732
[7,3]
 
*832
[8,3]...
 
*32
[,3]
 
[12i,3] [9i,3] [6i,3]
Figure
Figure
Vertex (3.3)2 (3.4)2 (3.5)2 (3.6)2 (3.7)2 (3.8)2 (3.)2 (3.12i)2 (3.9i)2 (3.6i)2
Schläfli r{3,3} r{3,4} r{3,5} r{3,6} r{3,7} r{3,8} r{3,} r{3,12i} r{3,9i} r{3,6i}
Coxeter

Dual uniform figures
Dual
conf.

V(3.3)2

V(3.4)2

V(3.5)2

V(3.6)2

V(3.7)2

V(3.8)2

V(3.)2
Symmetry mutations of dual quasiregular tilings: V(3.n)2
*n32 Spherical Euclidean Hyperbolic
*332 *432 *532 *632 *732 *832... *32
Tiling
Conf. V(3.3)2 V(3.4)2 V(3.5)2 V(3.6)2 V(3.7)2 V(3.8)2 V(3.)2

Expanded tilings

*n42 symmetry mutation of expanded tilings: 3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paraco. Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
 
[12i,3]
 
[9i,3]
 
[6i,3]
Figure
Config. 3.4.2.4 3.4.3.4 3.4.4.4 3.4.5.4 3.4.6.4 3.4.7.4 3.4.8.4 3.4..4 3.4.12i.4 3.4.9i.4 3.4.6i.4
*n32 symmetry mutation of dual expanded tilings: V3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paraco.
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
Figure
Config.

V3.4.2.4

V3.4.3.4

V3.4.4.4

V3.4.5.4

V3.4.6.4

V3.4.7.4

V3.4.8.4

V3.4..4

Omnitruncated tilings

*n32 symmetry mutation of omnitruncated tilings: 4.6.2n
Sym.
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paraco. Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]
*32
[,3]
 
[12i,3]
 
[9i,3]
 
[6i,3]
 
[3i,3]
Figures
Config. 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12 4.6.14 4.6.16 4.6. 4.6.24i 4.6.18i 4.6.12i 4.6.6i
Duals
Config. V4.6.4 V4.6.6 V4.6.8 V4.6.10 V4.6.12 V4.6.14 V4.6.16 V4.6. V4.6.24i V4.6.18i V4.6.12i V4.6.6i

Snub tilings

n32 symmetry mutations of snub tilings: 3.3.3.3.n
Symmetry
n32
Spherical Euclidean Compact hyperbolic Paracomp.
232 332 432 532 632 732 832 32
Snub
figures
Config. 3.3.3.3.2 3.3.3.3.3 3.3.3.3.4 3.3.3.3.5 3.3.3.3.6 3.3.3.3.7 3.3.3.3.8 3.3.3.3.
Gyro
figures
Config. V3.3.3.3.2 V3.3.3.3.3 V3.3.3.3.4 V3.3.3.3.5 V3.3.3.3.6 V3.3.3.3.7 V3.3.3.3.8 V3.3.3.3.

*n42 symmetry

Regular tilings

*n42 symmetry mutation of regular tilings: {4,n}
Spherical Euclidean Compact hyperbolic Paracompact

{4,3}

{4,4}

{4,5}

{4,6}

{4,7}

{4,8}...

{4,}
*n42 symmetry mutation of regular tilings: {n,4}
Spherical Euclidean Hyperbolic tilings
24 34 44 54 64 74 84 ...4

Quasiregular tilings

*n42 symmetry mutations of quasiregular tilings: (4.n)2
Symmetry
*4n2
[n,4]
Spherical Euclidean Compact hyperbolic Paracompact Noncompact
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
 
[ni,4]
Figures
Config. (4.3)2 (4.4)2 (4.5)2 (4.6)2 (4.7)2 (4.8)2 (4.)2 (4.ni)2
*n42 symmetry mutations of quasiregular dual tilings: V(4.n)2
Symmetry
*4n2
[n,4]
Spherical Euclidean Compact hyperbolic Paracompact Noncompact
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
 
[iπ/λ,4]
Tiling
 
Conf.

V4.3.4.3

V4.4.4.4

V4.5.4.5

V4.6.4.6

V4.7.4.7

V4.8.4.8

V4..4.
V4..4.

Truncated tilings

*n42 symmetry mutation of truncated tilings: 4.2n.2n
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolic Paracomp.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
Truncated
figures
Config. 4.4.4 4.6.6 4.8.8 4.10.10 4.12.12 4.14.14 4.16.16 4..
n-kis
figures
Config. V4.4.4 V4.6.6 V4.8.8 V4.10.10 V4.12.12 V4.14.14 V4.16.16 V4..
*n42 symmetry mutation of truncated tilings: n.8.8
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolic Paracompact
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
Truncated
figures
Config. 2.8.8 3.8.8 4.8.8 5.8.8 6.8.8 7.8.8 8.8.8 .8.8
n-kis
figures
Config. V2.8.8 V3.8.8 V4.8.8 V5.8.8 V6.8.8 V7.8.8 V8.8.8 V.8.8

Expanded tilings

*n42 symmetry mutation of expanded tilings: n.4.4.4
Symmetry
[n,4], (*n42)
Spherical Euclidean Compact hyperbolic Paracomp.
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]
*42
[,4]
Expanded
figures
Config. 3.4.4.4 4.4.4.4 5.4.4.4 6.4.4.4 7.4.4.4 8.4.4.4 .4.4.4
Rhombic
figures
config.

V3.4.4.4

V4.4.4.4

V5.4.4.4

V6.4.4.4

V7.4.4.4

V8.4.4.4

V.4.4.4

Omnitruncated tilings

*n42 symmetry mutation of omnitruncated tilings: 4.8.2n
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolic Paracomp.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
Omnitruncated
figure

4.8.4

4.8.6

4.8.8

4.8.10

4.8.12

4.8.14

4.8.16

4.8.
Omnitruncated
duals

V4.8.4

V4.8.6

V4.8.8

V4.8.10

V4.8.12

V4.8.14

V4.8.16

V4.8.

Snub tilings

4n2 symmetry mutations of snub tilings: 3.3.4.3.n
Symmetry
4n2
Spherical Euclidean Compact hyperbolic Paracomp.
242 342 442 542 642 742 842 42
Snub
figures
Config. 3.3.4.3.2 3.3.4.3.3 3.3.4.3.4 3.3.4.3.5 3.3.4.3.6 3.3.4.3.7 3.3.4.3.8 3.3.4.3.
Gyro
figures
Config. V3.3.4.3.2 V3.3.4.3.3 V3.3.4.3.4 V3.3.4.3.5 V3.3.4.3.6 V3.3.4.3.7 V3.3.4.3.8 V3.3.4.3.

*n52 symmetry

Regular tilings

*n52 symmetry mutation of truncated tilings: 5n
Sphere Hyperbolic plane

{5,3}

{5,4}

{5,5}

{5,6}

{5,7}

{5,8}

...{5,∞}

*n62 symmetry

Regular tilings

*n62 symmetry mutation of regular tilings: {6,n}
Spherical Euclidean Hyperbolic tilings

{6,2}

{6,3}

{6,4}

{6,5}

{6,6}

{6,7}

{6,8}
...
{6,∞}

*n82 symmetry

Regular tilings

n82 symmetry mutations of regular tilings: 8n
Space Spherical Compact hyperbolic Paracompact
Tiling
Config. 8.8 83 84 85 86 87 88 ...8

References

Sources

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5
  • From hyperbolic 2-space to Euclidean 3-space: Tilings and patterns via topology Stephen Hyde
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.