Tetraplegia

Tetraplegia, also known as quadriplegia, is defined as the dysfunction or loss of motor and/or sensory function in the cervical area of the spinal cord.[1] A loss of motor function can present as either weakness or paralysis leading to partial or total loss of function in the arms, legs, trunk, and pelvis; paraplegia is similar but affects the thoracic, lumbar, and sacral segments of the spinal cord and arm function is spared.[1] The paralysis may be flaccid or spastic.[2] A loss of sensory function can present as an impairment or complete inability to sense light touch, pressure, heat, pinprick/pain, and proprioception.[1] In these types of spinal cord injury, it is common to have a loss of both sensation and motor control.

Tetraplegia
Other namesQuadriplegia
Affected areas representing differences between paraplegia (left), hemiplegia (middle), and tetraplegia (right). Areas may differ for each condition and are dependent upon level of injury.
SpecialtyNeurosurgery, Physical medicine & rehabilitation
TypesComplete, incomplete
CausesDamage to spinal cord or brain by illness or injury; congenital conditions;
Diagnostic methodBased on symptoms, medical imaging

Signs and symptoms

Although the most obvious symptom is impairment of the limbs, functioning is also impaired in the trunk and pelvic organs. This can lead to loss or impairment of controlling bowel and bladder, sexual function, digestion, breathing and other autonomic functions. Furthermore, sensation is usually impaired in affected areas. This may manifest as numbness, reduced sensation or neuropathic pain.[3] Secondarily, because of their depressed functioning and immobility, people with tetraplegia are often more vulnerable to pressure sores, osteoporosis and fractures, frozen joints, spasticity, respiratory complications, infections, autonomic dysreflexia, deep vein thrombosis, and cardiovascular disease.[4]

The severity of the condition depends on both the level at which the spinal cord is injured and the extent of the injury. An individual with an injury at C1 (the highest cervical vertebra, at the base of the skull) will probably lose function from the neck down and be ventilator-dependent. An individual with a C7 injury may lose function from the chest down but still retain use of the arms and much of the hands. An individual in between, with a C5 injury may lose some function from the chest down and fine motor skills in his/her hands but still have flexion and extension abilities of certain muscles around the back or arm area.

The extent of the injury is also important. A complete severing of the spinal cord will result in complete loss of function from that vertebra down. A partial severing or even bruising of the spinal cord results in varying degrees of mixed function and paralysis. A common misconception with tetraplegia is that the victim cannot move legs, arms or any of the major function; this is often not the case. Some individuals with tetraplegia can walk and use their hands, as though they did not have a spinal cord injury, while others may use wheelchairs and they can still have function of their arms and mild finger movement; again, this varies based on the degree of damage to the spinal cord and is mostly seen with incomplete tetraplegia.[3]

It is common to have movement in limbs, such as the ability to move the arms but not the hands, or to be able to use the fingers but not to the same extent as before the injury. Furthermore, the deficit in the limbs may not be the same on both sides of the body; either left or right side may be more affected, depending on the location of the lesion on the spinal cord.[3]

Another important fact to keep in mind would be the possibility to see a person with quadriplegia moving any areas affected by the injury sporadically. One of the main causes for this would be myoclonus, or muscle spasms. "After a spinal cord injury, the normal flow of signals is disrupted, and the message does not reach the brain. Instead, the signals are sent back to the motor cells in the spinal cord and cause a reflex muscle spasm. This can result in a twitch, jerk or stiffening of the muscle."[5]

Causes

Tetraplegia is caused by damage to the brain or the spinal cord at a high level. The injury, which is known as a lesion, causes the loss of partial or total function of all four limbs, meaning the arms and the legs. Typical causes of this damage are trauma (such as a traffic collision, diving into shallow water, a fall, a sports injury), disease (such as transverse myelitis, Guillain–Barré syndrome, multiple sclerosis, or polio), or congenital disorders (such as muscular dystrophy).[6]

Cause Conditions
Trauma Motor vehicle accident, falls, violence, recreational activity[6]
Congenital Spina bifida, spinal muscular atrophy, cerebral palsy[6]
Vascular Ischemia due to arterial (aortic dissection, atherosclerosis, embolus), venous (thrombosis), or combined (AV malformation) causes[6]
Degenerative Amyotrophic lateral sclerosis[6]
Infectious Transverse myelitis (from viral, bacterial, or fungal source)[6]
Demyelinating Multiple sclerosis[6]

Tetraplegia is defined in many ways; C1–C4 usually affects arm movement more so than a C5–C7 injury; however, all tetraplegics have or have had some kind of finger dysfunction. So, it is not uncommon to have a tetraplegic with fully functional arms but no nervous control of their fingers and thumbs. It is possible to have a broken neck without becoming tetraplegic if the vertebrae are fractured or dislocated but the spinal cord is not damaged. Conversely, it is possible to injure the spinal cord without breaking the spine, for example when a ruptured disc or bone spur on the vertebra protrudes into the spinal column.

Diagnosis

Classification

Spinal cord injuries are classified as complete and incomplete by the American Spinal Injury Association (ASIA) classification.[1] The ASIA scale grades patients based on their functional impairment as a result of the injury, grading a patient from A to D. This has considerable consequences for surgical planning and therapy.[7] After a comprehensive neurologic exam testing segments of the body corresponding to spinal nerve roots, the examiner will determine the patient's motor level and sensory level (i.e. motor level C6, sensory level C7). These levels are unique for the patient's left and right side. This level is assigned based on the lowest (closest to the patient's feet) intact motor and sensory level. After this assignment, a neurological level of injury (NLI) is determined. The NLI is the lowest segment with intact sensory and motor function provided there is normal sensory and motor function above this segment.[1]

American Spinal Injury Association Impairment Scale[7]
A CompleteNo motor or sensory function is preserved in the sacral segments S4–S5.
B Sensory IncompleteSensory but not motor function is preserved at S4-S5. No motor function is preserved >3 levels below the motor neurological level of injury.
C Motor IncompleteMotor function is preserved below the neurological level; more than half of key muscles below the neurological level have a muscle grade less than 3.
D Motor IncompleteMotor function is preserved below the neurological level; at least half of key muscles below the neurological level have a muscle grade of 3 or more.

Complete spinal-cord lesions

Pathophysiologically, the spinal cord of a person with tetraplegia can be divided into three segments which can be useful for classifying the injury.

First, there is an injured functional medullary segment. This segment has unparalysed, functional muscles; the action of these muscles is voluntary, not permanent and hand strength can be evaluated by the Medical Research Council (MRC) Scale. This scale is used when upper limb surgery is planned, as referred to in the 'International Classification for hand surgery in tetraplegic patients'.[8]

A lesional segment (or an injured metamere) consists of denervated corresponding muscles. The lower motor neuron (LMN) of these muscles is damaged. These muscles are hypotonic, atrophic and have no spontaneous contraction. The existence of joint contractures should be monitored.[8]

Below the level of the injured metamere, there is an injured sublesional segment with the intact lower motor neuron, which means that medullary reflexes are present, but the upper cortical control is lost. These muscles show some increase in tone when elongated and sometimes spasticity, the trophicity is good.[8]

Incomplete spinal-cord lesions

Incomplete spinal cord injuries result in varied post injury presentations. There are three main syndromes described, depending on the exact site and extent of the lesion.

  1. Central cord syndrome: most of the cord lesion is in the gray matter of the spinal cord, sometimes the lesion continues in the white matter.[9]
  2. Brown-Séquard syndrome: hemisection of the spinal cord.[9]
  3. Anterior cord syndrome: a lesion of the anterior horns and the anterolateral tracts, with a possible division of the anterior spinal artery.[9]

For most patients with ASIA A (complete) tetraplegia, ASIA B (incomplete) tetraplegia and ASIA C (incomplete) tetraplegia, the International Classification level of the patient can be established without great difficulty. The surgical procedures according to the International Classification level can be performed. In contrast, for patients with ASIA D (incomplete) tetraplegia it is difficult to assign an International Classification other than International Classification level X (others).[9] Therefore, it is more difficult to decide which surgical procedures should be performed. A far more personalized approach is needed for these patients. Decisions must be based more on experience than on texts or journals.[9]

The results of tendon transfers for patients with complete injuries are predictable. On the other hand, it is well known that muscles lacking normal excitation perform unreliably after surgical tendon transfers. Despite the unpredictable aspect in incomplete lesions, tendon transfers may be useful. The surgeon should be confident that the muscle to be transferred has enough power and is under good voluntary control. Pre-operative assessment is more difficult to assess in incomplete lesions.[9]

Patients with an incomplete lesion also often need therapy or surgery before the procedure to restore function to correct the consequences of the injury. These consequences are hypertonicity/spasticity, contractures, painful hyperesthesias and paralyzed proximal upper limb muscles with distal muscle sparing.[9]

Spasticity is a frequent consequence of incomplete injuries. Spasticity often decreases function, but sometimes a patient can control the spasticity in a way that it is useful to their function. The location and the effect of the spasticity should be analyzed carefully before treatment is planned. An injection of Botulinum toxin (Botox) into spastic muscles is a treatment to reduce spasticity. This can be used to prevent muscle shortening and early contractures.[2][9]

Over the last ten years, an increase in traumatic incomplete lesions is seen, due to the better protection in traffic.

Treatment

Upper limb paralysis refers to the loss of function of the elbow and hand. When upper limb function is absent as a result of a spinal cord injury it is a major barrier to regain autonomy. People with tetraplegia should be examined and informed concerning the options for reconstructive surgery of the tetraplegic arms and hands.[10]

Prognosis

Christopher Reeve speaking at MIT, 2003

Delayed diagnosis of cervical spine injury has grave consequences for the victim. About one in 20 cervical fractures are missed and about two-thirds of these patients have further spinal-cord damage as a result. About 30% of cases of delayed diagnosis of cervical spine injury develop permanent neurological deficits. In high-level cervical injuries, total paralysis from the neck can result. High-level tetraplegics (C4 and higher) will likely need constant care and assistance in activities of daily living (ADLs), such as getting dressed, eating, and bowel/bladder care. Individuals with C5 injuries retain some function in their biceps, deltoids, and other muscles; they typically can perform many ADLs including feeding, bathing, and grooming but require total assistance with bowel/bladder care. The C6 level adds function in the extensor carpi radialis, longus, and other muscles allowing for wrist extension, scapular abduction, and wrist flexion; typically, these patients have modified independent feeding and grooming with adaptive equipment, independent with dressing, can use both a manual and power wheelchair but require assistance with some activities of daily living. The C7 level is where function is retained in the triceps allowing for arm extension; C7 is considered the key level at which most activities can be performed independently with a wheelchair and assistive devices; activities include feeding, grooming, dressing, light meal preparation, and transfers on level surfaces.[3]

Even with "complete" injuries, in some rare cases, through intensive rehabilitation, slight movement can be regained through "rewiring" neural connections, as in the case of actor Christopher Reeve.[11]

In the case of cerebral palsy, which is caused by damage to the motor cortex either before, during (10%), or after birth, some people with incomplete tetraplegia are gradually able to learn to stand or walk through physical therapy.[3]

Quadriplegics can improve muscle strength by performing resistance training at least three times per week. Combining resistance training with proper nutrition intake can greatly reduce co-morbidities such as obesity and type 2 diabetes.[12]

Epidemiology

There are an estimated 17,700 spinal cord injuries each year in the United States; the total number of people affected by spinal cord injuries is estimated to be approximately 290,000 people.[13]

In the US, spinal cord injuries alone cost approximately US$40.5 billion each year, which is a 317 percent increase from costs estimated in 1998 ($9.7 billion).[14]

The estimated lifetime costs for a 25-year-old in 2018 is $3.6 million when affected by low tetraplegia and $4.9 million when affected by high tetraplegia.[13] In 2009, it was estimated that the lifetime care of a 25-year-old rendered with low tetraplegia was about $1.7 million, and $3.1 million with high tetraplegia.[15]

There are about 1,000 people affected each year in the UK (~1 in 60,000—assuming a population of 60 million).

Terminology

The condition of paralysis affecting four limbs is alternately termed tetraplegia or quadriplegia. Quadriplegia combines the Latin root quadra, for "four", with the Greek root πληγία plegia, for "paralysis". Tetraplegia uses the Greek root τετρα tetra for "four". In the past, tetraplegia and quadriplegia were used interchangeably in the medical literature. Medical literature favors using tetraplegia as the standardized term as it is frowned upon to mix Greek and Latin roots, although quadriplegia remains in use.[16]


Tetraplegia, meaning the paralysis of four limbs, may be confused with tetraparesis, meaning the weakness of four limbs. In medicine, it is important to not use these terms when making a diagnosis. When diagnosing and classifying spinal cord injuries, the ASIA classification is used to make the distinction of weakness vs. no weakness as well as to classify neurologically complete vs. incomplete lesions . Use of tetraparesis is discouraged as it inaccurately describes an incomplete lesion and incorrectly implies tetraplegia applies only to cases of complete lesions.[17]

See also

References

  1. Rupp R, Biering-Sørensen F, Burns SP, Graves DE, Guest J, Jones L, et al. (2021-03-01). "International Standards for Neurological Classification of Spinal Cord Injury: Revised 2019". Topics in Spinal Cord Injury Rehabilitation. 27 (2): 1–22. doi:10.46292/sci2702-1. PMC 8152171. PMID 34108832.
  2. Adams MM, Hicks AL (October 2005). "Spasticity after spinal cord injury". Spinal Cord. 43 (10): 577–586. doi:10.1038/sj.sc.3101757. PMID 15838527.
  3. Spinal cord medicine. Steven Kirshblum, Vernon W. Lin (3rd ed.). New York. 2019. ISBN 978-0-8261-3775-3. OCLC 1079055185.{{cite book}}: CS1 maint: others (link)
  4. Schurch B, Knapp PA, Jeanmonod D, Rodic B, Rossier AB (January 1998). "Does sacral posterior rhizotomy suppress autonomic hyper-reflexia in patients with spinal cord injury?". British Journal of Urology. 81 (1): 73–82. doi:10.1046/j.1464-410x.1998.00482.x. PMID 9467480.
  5. "Spasticity and Spinal Cord Injury | Model Systems Knowledge Translation Center (MSKTC)". msktc.org. Retrieved 2022-10-03.
  6. McDonald JW, Sadowsky C (February 2002). "Spinal-cord injury". Lancet. 359 (9304): 417–425. doi:10.1016/S0140-6736(02)07603-1. PMID 11844532.
  7. Roberts TT, Leonard GR, Cepela DJ (May 2017). "Classifications In Brief: American Spinal Injury Association (ASIA) Impairment Scale". Clinical Orthopaedics and Related Research. 475 (5): 1499–1504. doi:10.1007/s11999-016-5133-4. PMC 5384910. PMID 27815685.
  8. Coulet B, Allieu Y, Chammas M (August 2002). "Injured metamere and functional surgery of the tetraplegic upper limb". Hand Clinics. 18 (3): 399–412, vi. doi:10.1016/s0749-0712(02)00020-3. PMID 12474592.
  9. Hentz VR, Leclercq C (May 2008). "The management of the upper limb in incomplete lesions of the cervical spinal cord". Hand Clinics. 24 (2): 175–84, vi. doi:10.1016/j.hcl.2008.01.003. PMID 18456124.
  10. Fridén J, Reinholdt C (2008). "Current concepts in reconstruction of hand function in tetraplegia". Scandinavian Journal of Surgery. 97 (4): 341–6. doi:10.1177/145749690809700411. PMID 19211389.
  11. Burkeman O (2002). "Man of steel". The Guardian. Retrieved 4 September 2018.
  12. Gorgey AS, Mather KJ, Cupp HR, Gater DR (January 2012). "Effects of resistance training on adiposity and metabolism after spinal cord injury". Medicine and Science in Sports and Exercise. 44 (1): 165–74. doi:10.1249/MSS.0b013e31822672aa. PMID 21659900.
  13. "National Spinal Cord Injury Statistical Center, Facts and Figures at a Glance" (PDF). Birmingham, AL: University of Alabama at Birmingham. 2018.
  14. "Stats about paralysis". Christopher & Dana Reeve Foundation. 2016. Retrieved 4 September 2018.
  15. "National Spinal Cord Injury Statistical Center, Facts and Figures at a Glance" (PDF). Birmingham, AL: University of Alabama at Birmingham. 2009.
  16. Solinsky R, Kirshblum SC (November 2018). "Challenging questions regarding the international standards". The Journal of Spinal Cord Medicine. 41 (6): 684–690. doi:10.1080/10790268.2017.1362929. PMC 6217465. PMID 28820352.
  17. Nas K, Yazmalar L, Şah V, Aydın A, Öneş K (January 2015). "Rehabilitation of spinal cord injuries". World Journal of Orthopedics. 6 (1): 8–16. doi:10.5312/wjo.v6.i1.8. PMC 4303793. PMID 25621206.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.