Anexo:Símbolos matemáticos

Genéricos

Símbolo Nombre se lee como Categoría

igualdadigual a, igual que todos
x = y significa: x e y son nombres diferentes que hacen referencia a un mismo objeto o ente.
1 + 2 = 6 − 3, 36 + 11 = 47 

equivalenciaes equivalente a, equivale a todos
significa: x e y son objetos, iguales o diferentes, miembros de un conjunto de objetos con la característica común de los miembros del conjunto.



definiciónse define comotodos
x := y o x y significa: x se define como otro nombre para y (notar, sin embargo, que ≡ puede también significar otras cosas, como congruencia)
P :⇔ Q significa: P se define como lógicamente equivalente a Q
cosh x := (1/2)(exp x + exp (−x)); A XOR B :⇔ (A  B)  ¬(A  B)






ad infinitum o sucesión matemáticase repite/progresióntodos
0, 1, 2, 3, ... 18 y a1, a2, a3, ...a7 y a1, a2, a3, ...an se entiende que la progresión se extiende hasta el número o valor indicado. En estos casos, 18, 7 y algún natural n respectivamente.

1, 2, 3, 4, ... y a1, a2, a3, ... y a1,  a2,  a3,  ... se entiende que cada progresión se extiende infinitamente[1]
2, 4, 6, 8, ... se entiende que hay un aumento progresivo según el patrón hasta el infinito.
... –4, –3, –2, –1, 0, 1, 2, 3, 4, ... se entiende que decrementa progresivamente hacia la izquierda y que incrementa progresivamente hacia la derecha, y se extiende infinitamente en ambos sentidos.

π  3,14159265358979323846... se entiende que el valor del símbolo pi es aproximadamente 3,14159265358979323846 pero que los siguientes dígitos conocidos y desconocidos se extienden hasta el infinito[2].

o se entiende como suma de fracciones periódicas.

se entiende como una matriz de progresión donde los elementos comienzan por la fila y columna de subíndice 1 y terminan en la fila de subíndice 2324, y la columna de subíndice 127.

se entiende que el número áureo es igual 1 sumado la fracción de 1 sobre la repetición infinita de la misma ecuación.

x = 1 + 2 + 3 + ... + 54

Aritmética y álgebra

Símbolo Nombre se lee como Categoría

adiciónmásaritmética y álgebra
4 + 6 = 10 significa que si a cuatro se le agrega 6, la suma, o resultado, es 10.
43 + 65 = 108; 2 + 7 = 9
sustracciónmenosaritmética
36—5 = 31 significa que si 36 es restado de 5, el resultado será 31. El símbolo 'menos' también se utiliza para denotar que un número es negativo. Por ejemplo, 36 + (−55) = 36—55 = –19 significa que si 'treinta y seis' y 'menos cincuenta y cinco' son sumados, el resultado es 'menos diecinueve'.
36—5 = 31; 36—55=–19


multiplicaciónporaritmética
7 × 6 = 42 significa que si se cuenta siete veces seis, el resultado será 42.
4 × 6 = 24   o   4 * 6 = 24   o   4 · 6 = 24


divisiónentre, dividido, dividido poraritmética
significa que si se hace seis pedazos uniformes de cuarenta y dos, cada pedazo será de tamaño siete.

sumatorio suma sobre ... desde ... hasta ... de aritmética
k=1n ak significa: a1 + a2 + ... + an
k=14 k² = 1² + 2² + 3² + 4² = 1 + 4 + 9 + 16 = 30
productorio producto sobre... desde ... hasta ... de aritmética
k=1n ak significa: a1a2···an
k=14 (k + 2) = (1  + 2)(2 + 2)(3 + 2)(4 + 2) = 3 × 4 × 5 × 6 = 360

Lógica proposicional

Símbolo Nombre se lee como Categoría


implicación material o en un solo sentido implica; si .. entonces; por lo tanto lógica proposicional
AB significa: si A es verdadero entonces B es verdadero también; si B es verdadero entonces nada se dice sobre A.
→ puede significar lo mismo que ⇒, o puede ser usado para denotar funciones, como se indica más abajo.
x = 2    x² = 4 es verdadera, pero 4 = x²     x = 2 es, en general, falso (ya que x podría ser −2)


doble implicación si y solo si[3] lógica proposicional
A B significa: A es verdadera si B es verdadera y viceversa.
x + 5 = y + 2    x + 3 = y

conjunción lógica o intersección en un retículo y lógica proposicional, teoría de retículos
la proposición AB es verdadera si A y B son ambas verdaderas; de otra manera es falsa.
n < 4    n > 2    n = 3 cuando n es un número natural

disyunción lógica o unión en un retículo o...ó lógica proposicional, teoría de retículos
la proposición AB es verdadera si A o B (o ambas) son verdaderas; si ambas son falsas, la proposición es falsa.
n ≥ 4    n ≤ 2  n ≠ 3 cuando n es un número natural


negación lógicanológica proposicional
la proposición ¬A es verdadera si y solo si A es falsa.
una barra puesta sobre otro operador es equivalente a un ¬ puesto a la izquierda.
¬(A B) ⇔ (¬A) ∨ (¬B); x S    ¬(x S)

Lógica de predicados

Símbolo Nombre se lee como Categoría

cuantificador universal para todos; para cualquier; para cada lógica de predicados
 x : P(x) significa: P(x) es verdadera para cualquier x
 n : n² n

cuantificador existencialexiste por lo menos un/os lógica de predicados
 x : P(x) significa: existe por lo menos un x tal que P(x) es verdadera.
 n : n + 5 = 2n - 26

cuantificador existencial con marca de unicidad existe un/os único/slógica de predicados
∃!  x : P(x) significa: existe un único x tal que P(x) es verdadera.
∃!  n : n + 1 = 2


reluztal quelógica de predicados
 x : P(x) significa: existe por lo menos un x tal que P(x) es verdadera.
 n : n + 5 = 2n 

Teoría de conjuntos

Símbolo Nombre se lee como Categoría

delimitadores de conjunto.el conjunto de ... teoría de conjuntos
{a,b,c} significa: el conjunto que contiene a, b, y c
 = {1,2,...}


notación constructora de conjuntos el conjunto de los elementos ... tales que ... teoría de conjuntos
{x : P(x)} significa: el conjunto de todos los x para los cuales P(x) es verdadera. {x | P(x)} es lo mismo que {x : P(x)}.
{n  | n² < 20} = {1,2,3,4}

conjunto vacíoconjunto vacío teoría de conjuntos
{} significa: el conjunto que no tiene elementos; ∅ es la misma cosa.
{n  : 1 < n² < 4} = {}

pertenencia de conjuntos en; está en; es elemento de; es miembro de; pertenece a teoría de conjuntos
a S significa: a es elemento del conjunto S; a S significa: a no es elemento del conjunto S
(1/2)−1 ; 2−1 


subconjuntoes subconjunto de teoría de conjuntos
A B significa: cada elemento de A es también elemento de B
A B significa: A B pero A B
A BA;  
unión de conjuntosla unión de ... y ...; unión teoría de conjuntos
AB significa: el conjunto que contiene todos los elementos de A y también todos aquellos de B, pero ningún otro.
AB    A B = B

intersección de conjuntos la intersección de ... y ...; intersección teoría de conjuntos
A B significa: el conjunto que contiene todos aquellos elementos que A y B tienen en común.
{x  : x² = 1}  = {1}
diferencia de conjuntosmenos; sin teoría de conjuntos
A \ B significa: el conjunto que contiene todos aquellos elementos de A que no se encuentran en B
{1,2,3,4} \ {3,4,5,6} = {1,2}

Funciones

Símbolo Nombre se lee como Categoría


aplicación de función; agrupamiento, generalmente para agrupamiento de argumentos, elementos dentro de fórmulas matemáticas, elementos de vectores, matrices o tensores: ; para agrupamientos de miembros de un conjunto: ; como superíndice indica orden de la derivada; indica coeficiente binomial. defunciones
para aplicación de función: f(x) significa: el valor de la función f sobre el elemento x
para agrupamiento dentro de fórmulas matemáticas: realizar primero las operaciones dentro de los paréntesis.
Si f(x) := x², entonces f(3) = 3² = 9; (8/4)/2 = 2/2 = 1, pero 8/(4/2) = 8/2 = 4
correspondencia funcionalde ... enfunciones
f: X  Y significa: la función f con correspondencia de X en Y (que va del conjunto X al conjunto Y)
Considérese la función definida por f(x) := x²+1
correspondencia funcionalde ... enfunciones
f: X  Y significa: la función inyectiva f con correspondencia de X en Y (que va del conjunto X al conjunto Y)
Considérese la función f:  definida por +2
correspondencia funcionalde ... enfunciones
f: X  Y significa: la función suprayectiva f con correspondencia de X en Y (que va del conjunto X al conjunto Y)
Considérese la función definida por
correspondencia funcionalde ... enfunciones
f: X  Y significa: la función f que mapea de X a Y
Considérese la función  
 
 
Funciones de Suelo y TechoSuelo de, Techo defunciones
La función suelo asigna el entero más próximo por defecto (truncamiento de la parte fraccionaria), la función techo asigna el entero más próximo por exceso (la parte fraccionaria se redondea al entero siguiente).
Si x=1.5, entonces x=1 y x=2

Números

Símbolo Nombre se lee como Categoría
números naturalesNnúmeros
significa: {0,1,2,3,...}, pero véase el artículo números naturales para una convención diferente ().
{|a| } =
números enterosZnúmeros
significa: {...,−3,−2,−1,0,1,2,3,4,...}
números racionalesQnúmeros
significa: {p/q : p, q Z, q ≠ 0}
3.14 ; π 
números realesRnúmeros
significa:
π ; √(−1) 
números complejosCnúmeros
significa: {a + bi : a, b }
i = √(−1) 
raíz cuadrada la raíz cuadrada de; la principal raíz cuadrada de números reales
x significa: el número positivo cuyo cuadrado es x
√(x²) = |x|

infinitoinfinitonúmeros
∞ es un elemento de la recta real extendida mayor que todos los números reales; ocurre frecuentemente en límites
limx→0 1/|x| = ∞
valor absolutovalor absoluto de números
|x| significa: la distancia en la recta real (o en el plano complejo o en el espacio n dimensional) entre x y cero, se le llama también módulo. |a + bi | = √(+ b²)
Cardinalidad:  |A|= Cardinalidad del conjunto A.
Porcentajeporcentaje de números
|x| Representa una cantidad dada como una fracción en 100 partes iguales.
|a + bi | = x% = x/100

Órdenes parciales

Símbolo Nombre se lee como Categoría


comparación es menor a, es menor que; es mayor a, es mayor que órdenes parciales
x < y significa: x es menor que y; x  > y significa: x es mayor que y
3  < 4  5  > 4 
Símbolo Nombre se lee como Categoría


comparación es menor o igual a, es menor o igual que; es mayor o igual a, es mayor o igual que órdenes parciales
x y significa: x es menor o igual que y; x y significa: x es mayor o igual que y
x ≥ 1    x² x

Geometría euclidiana

Símbolo Nombre se lee como Categoría

pipiGeometría euclidiana
π significa: la razón de la circunferencia a su diámetro.
A = πr² es el área de un círculo con radio "r"

Combinatoria

Símbolo Nombre se lee como Categoría

factorialfactorial decombinatoria
n! es el producto 1×2×...×n
4! = 24

Análisis funcional

Símbolo Nombre se lee como Categoría

normanorma de; longitud de análisis funcional
es la norma del elemento x de un espacio vectorial normado
desigualdad triangular de un espacio normado

Cálculo diferencial

Símbolo Nombre se lee como Categoría
integración integral desde ... hasta ... de ... con respecto a ... cálculo
ab f(x) dx significa: el área, con signo, entre el eje-x y la gráfica de la función f entre x = a y x = b
0b  dx = b³/3; ∫x² dx = x³/3
derivaciónderivada de f; f prima cálculo
f '(x) es la derivada de la función f en el punto x, esto es, la pendiente de la tangente en ese lugar.
Si f(x) = x², entonces f '(x) = 2x y f ' '(x) = 2

gradiente operador diferencial del o nabla, gradiente de cálculo
f (x1, …, xn) es el vector de derivadas parciales (df / dx1, …, df / dxn)
Si f (x, y, z) = 3xy + z² entonces ∇f = (3y, 3x, 2z)
derivada parcialderivada parcial de cálculo
Con f (x1, …, xn), ∂f/∂xi es la derivada de f con respecto a xi, con todas las otras variables mantenidas constantes.
Si f(x, y) = x²y, entonces ∂f/∂x = 2xy

Ortogonalidad

Símbolo Nombre se lee como Categoría
perpendiculares perpendicular a ortogonalidad
x y significa: x es perpendicular a y; o, más generalmente, x es ortogonal a y.

Álgebra matricial

Símbolo Nombre se lee como Categoría
perpendiculartraspuestamatrices y vectores
(a,b) con al lado o a modo de potencia significa que el vector se debe ubicar no de izquierda a derecha, sino de arriba abajo. En numerosos trabajos de investigación se utiliza esta sintaxis al no poder representar en un documento vectores verticales.

Teoría de retículos

Símbolo Nombre se lee como Categoría
fondoel elemento fondoteoría de retículos
x = significa: x es el elemento más pequeño.

Véase también

  • Wikipedia: Cómo se edita una página contiene información acerca de cómo producir símbolos matemáticos en otros artículos matemáticos.

Referencias

  1. «What is the difference between \ldots and \cdots». TeX - LaTeX Stack Exchange. Consultado el 13 de noviembre de 2015.
  2. François Viète
  3. sii y syss son usados por los matemáticos como jerga ocasional, pero no están reconocidos como términos estándar, por lo que tampoco suelen aparecer en textos formales.

Enlaces externos

Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.