Gheorghe Vrănceanu

Gheorghe Vrănceanu (né le à Valea Hogei, un village de la commune de Lipova dans le județ de Bacău, en Roumanie et mort le à Bucarest) est un mathématicien spécialiste de géométrie.

Gheorghe Vrănceanu
Biographie
Naissance

Valea Hogei (d)
Décès
(à 78 ans)
Bucarest
Sépulture
Nationalité
Formation
Liceu Mihail Kogălniceanu (d) (-)
Université Alexandre-Jean-Cuza de Iași (-)
Université de Göttingen (-)
Université de Rome « La Sapienza » (-)
Activités
Mathématicien, professeur d'université, topologue, Chartered Building Surveyor
Autres informations
A travaillé pour
Membre de
Dir. de thèse

Biographie

Vrănceanu étudie, grâce à une bourse, les mathématiques à partir de 1919 à l'université Alexandru Ioan Cuza de Iași. Il devient assistant au séminaire de mathématiques en 1921 et termine ses études en 1922. En 1923 il va à l'université de Göttingen auprès de David Hilbert et ensuite à l'université de Rome « La Sapienza », où il soutient une thèse de doctorat en 1924 auprès de Tullio Levi-Civita (titre de la thèse :Sopra una teorema di Weierstrass e le sue applicazioni alla stabilita)[1]. Il retourne ensuite Iași. Il découvre en 1926 les espaces nonholonomes qu'il présente en 1928 au Congrès international des mathématiciens de Bologne ce qui le fait connaître. Il est nommé professeur non titulaire à Iași, sélourne en 1927-1928 avec une bourse Rockefeller à Paris où il travaille avec Élie Cartan, puis il séjourne aux États-Unis à l'université Harvard et à l'université de Princeton où il côtoie George David Birkhoff et Oswald Veblen. On lui suggère de tenter une carrière universitaire aux États-Unis , mais il préfère retourner en Roumanie. En 1929 il devient professeur à l'université Cernauti (« universitatea Regele Carol I din Cernăuţi », nom de l'université nationale de Tchernivtsi quand elle était roumaine) et en 1939 il est nommé professeur à l'université de Bucarest à la suite de Gheorghe Țițeica. En 1948 il est titulaire de la chaire de géométrie et topologie, jusqu'à sa retraite en 1970.

Recherche

Les recherches scientifiques de Gheorghe Vrănceanu étaient centrées sur la géométrie (où il a fait des recherches dans de nombreux domaines) et son application en mécanique. Il a écrit plusieurs manuels, y compris sur la géométrie différentielle (son livre a été traduit en français et en allemand).

En 1928, il a introduit, lors du Congrès international des mathématiciens de Bologne les variétés non holonomes Parallelisme et courbure dans une variété non holonome ») qui, dans la terminologie contemporaine, sont des variétés lisses munies d'une distribution lisse[2] qui n'est généralement pas intégrable. À peu près au même moment, le concept a été introduit par John L. Synge], et d'autres contributions importantes ont été faites par les mathématiciens russes Viktor Wagner (en) et Jan A. Schouten (de)[3]. Ces variétés sont nées de la nécessité de trouver un analogue géométrique pour les systèmes mécaniques non holonomes. Élie Cartan lui-même a également travaillé sur ce thème[4].

Gheorghe Vrănceanu était également actif politiquement et était, en 1944, l'un des fondateurs d'un parti qui s'opposait à un autre combat contre l'Union soviétique.

Gheorghe Vrănceanu fut éditeur de la Revue roumaine de mathématiques pures et appliquées et s'appliqua à nouer des contacts internationaux par l'organisation de conférences et des invitations de professeurs.

Vrănceanu a participé à l'édition des Œuvres complètes d'Élie Cartan. Parmi ses doctorants, il y a notamment Kostake Teleman (de) et Henri Moscovici (de).

Distinctions

Publications

Vrănceanu a publié de nombreux articles et ouvrages, en roumain, français ou italien. Mathematical Reviews liste plus de 200 entrées, Zentralblatt MATH autour de 240.

  • Opera matematica, 4 volumes, Bucarest, 1969-1977
  • Les espaces non holonomes, Paris, Gauthier-Villars, coll. « Mémorial des sciences mathématiques » (no 76), , 70 p. (lire en ligne)
  • Interprétation géométrique des processus probabilistiques continus, Paris, Gauthier-Villars, coll. « Mémorial des sciences mathématiques » (no 167), , 72 p. (BNF 33219129, lire en ligne)

Vrănceanu a publié des Leçons de géométrie différentielle 4 volumes, en plusieurs éditions et en plusieurs langues : en roumain, aux Editura Academiei Republicii Socialiste România, en français, chez Gauthier-Villars, en allemand, (Vorlesungen über Differentialgeometrie, Berlin, Akademie Verlag 1961).

Bibliographie

Notes et références

  1. (en) « Vranceanu », sur le site du Mathematics Genealogy Project.
  2. On entend ici par distribution lisse une famille de sous-espaces linéaires de l'espace tangent d'une variété lises réelle M () qui dépend continument de x.
  3. Anatoli M. Vershik et V. Ya. Gershkovich, « Nonholonomic dynamical systems, Geometry of Distributions and Variational Problems », dans Vladimir I. Arnol'd et Sergueï P. Novikov, (éditeurs), Systèmes dynamiques VII : Integrable Systems Nonholonomic Dynamical Systems, Springer-Verlag, coll. « Encyclopedia of Mathematics » (no 16), , vii+344 (ISBN 978-3-540-18176-7, présentation en ligne), p. 4-9.
  4. Philippe Nabonnand, « La notion d'holonomie chez Élie Cartan », Revue d'histoire des sciences, vol. 62, no 1, , p. 221 (ISSN 0151-4105, DOI 10.3917/rhs.621.0221, lire en ligne).

Liens externes

  • Portail des mathématiques
  • Portail de la Roumanie
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.