Point de Heegner

En mathématiques, un point de Heegner est un point sur une courbe modulaire, obtenu comme image sur la courbe d’une racine d’un polynôme du deuxième degré, à coefficients entiers et de discriminant négatif.

Dans l’interprétation d’une courbe modulaire comme espace de modules, c’est-à-dire comme ensemble de classes de courbes elliptiques, un point de Heegner correspond à une classe de courbes elliptiques à multiplication complexe.

Les points de Heegner ont été utilisés en particulier pour construire des points à coordonnées rationnelles d’ordre infini sur les courbes elliptiques de rang 1 et prouver pour ces courbes une partie de la conjecture de Birch et Swinnerton-Dyer.

Références.

Bibliographie

  • Portail des mathématiques
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.