صفر (تحليل عقدي)

في التحليل العقدي نقول عن a أنه صفر عقدي لدالة تامة الشكل f إذا كان a عددا عقديا يحقق

[1]

درجة الصفر العقدي

نقول عن a أنه صفر بسيط للدالة تامة الشكل f إذا كان بالإمكان كتابة f على الشكل [2]

ونقول عن a أنه صفر مركب من الدرجة n للدالة تامة الشكل f إذا كان بالإمكان كتابة f بالشكل

وجود الصفر العقدي

المبرهنة الأساسية في الجبر تقول إن أي دالة كثيرة الحدود وغير ثابتة وذات متحولات عقدية تملك على الأقل صفرا واحدا في الفضاء العقدي. غير أن بعض الدوال كثيرة الحدود ذات المتحولات الحقيقة قد لا تملك صفرا حقيقيا، ومثال على ذلك الدالة f(x) = x2 + 1

خواص

إن كل صفر عقدي من مجموعة أصفار دالة كثيرة حدود يكون معزولا. أي أن هناك قرص صغير يحيط بكل صفر عقدي للدالة كثيرة الحدود لا يحوي أصفارا أخرى للدالة.

انظر

مراجع

  1. "Singularities, Zeros, and Poles"، مؤرشف من الأصل في 7 أبريل 2013.
  2. R. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Graduate Texts in Mathematics 108
  • بوابة تحليل رياضي
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.