Cantellated 6-cubes

In six-dimensional geometry, a cantellated 6-cube is a convex uniform 6-polytope, being a cantellation of the regular 6-cube.


6-cube

Cantellated 6-cube

Bicantellated 6-cube

6-orthoplex

Cantellated 6-orthoplex

Bicantellated 6-orthoplex

Cantitruncated 6-cube

Bicantitruncated 6-cube

Bicantitruncated 6-orthoplex

Cantitruncated 6-orthoplex
Orthogonal projections in B6 Coxeter plane

There are 8 cantellations for the 6-cube, including truncations. Half of them are more easily constructed from the dual 5-orthoplex.

Cantellated 6-cube

Cantellated 6-cube
Typeuniform 6-polytope
Schläfli symbolrr{4,3,3,3,3}
or
Coxeter-Dynkin diagrams
5-faces
4-faces
Cells
Faces
Edges4800
Vertices960
Vertex figure
Coxeter groupsB6, [3,3,3,3,4]
Propertiesconvex

Alternate names

  • Cantellated hexeract
  • Small rhombated hexeract (acronym: srox) (Jonathan Bowers)[1]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Bicantellated 6-cube

Cantellated 6-cube
Typeuniform 6-polytope
Schläfli symbol2rr{4,3,3,3,3}
or
Coxeter-Dynkin diagrams
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groupsB6, [3,3,3,3,4]
Propertiesconvex

Alternate names

  • Bicantellated hexeract
  • Small birhombated hexeract (acronym: saborx) (Jonathan Bowers)[2]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Cantitruncated 6-cube

Cantellated 6-cube
Typeuniform 6-polytope
Schläfli symboltr{4,3,3,3,3}
or
Coxeter-Dynkin diagrams
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groupsB6, [3,3,3,3,4]
Propertiesconvex

Alternate names

  • Cantitruncated hexeract
  • Great rhombihexeract (acronym: grox) (Jonathan Bowers)[3]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

It is fourth in a series of cantitruncated hypercubes:

Petrie polygon projections
Truncated cuboctahedron Cantitruncated tesseract Cantitruncated 5-cube Cantitruncated 6-cube Cantitruncated 7-cube Cantitruncated 8-cube

Bicantitruncated 6-cube

Cantellated 6-cube
Typeuniform 6-polytope
Schläfli symbol2tr{4,3,3,3,3}
or
Coxeter-Dynkin diagrams
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Coxeter groupsB6, [3,3,3,3,4]
Propertiesconvex

Alternate names

  • Bicantitruncated hexeract
  • Great birhombihexeract (acronym: gaborx) (Jonathan Bowers)[4]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

These polytopes are part of a set of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.

B6 polytopes

β6

t1β6

t2β6

t2γ6

t1γ6

γ6

t0,1β6

t0,2β6

t1,2β6

t0,3β6

t1,3β6

t2,3γ6

t0,4β6

t1,4γ6

t1,3γ6

t1,2γ6

t0,5γ6

t0,4γ6

t0,3γ6

t0,2γ6

t0,1γ6

t0,1,2β6

t0,1,3β6

t0,2,3β6

t1,2,3β6

t0,1,4β6

t0,2,4β6

t1,2,4β6

t0,3,4β6

t1,2,4γ6

t1,2,3γ6

t0,1,5β6

t0,2,5β6

t0,3,4γ6

t0,2,5γ6

t0,2,4γ6

t0,2,3γ6

t0,1,5γ6

t0,1,4γ6

t0,1,3γ6

t0,1,2γ6

t0,1,2,3β6

t0,1,2,4β6

t0,1,3,4β6

t0,2,3,4β6

t1,2,3,4γ6

t0,1,2,5β6

t0,1,3,5β6

t0,2,3,5γ6

t0,2,3,4γ6

t0,1,4,5γ6

t0,1,3,5γ6

t0,1,3,4γ6

t0,1,2,5γ6

t0,1,2,4γ6

t0,1,2,3γ6

t0,1,2,3,4β6

t0,1,2,3,5β6

t0,1,2,4,5β6

t0,1,2,4,5γ6

t0,1,2,3,5γ6

t0,1,2,3,4γ6

t0,1,2,3,4,5γ6

Notes

  1. Klitzing, (o3o3o3x3o4x - srox)
  2. Klitzing, (o3o3x3o3x4o - saborx)
  3. Klitzing, (o3o3o3x3x4x - grox)
  4. Klitzing, (o3o3x3x3x4o - gaborx)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "6D uniform polytopes (polypeta)". o3o3o3x3o4x - srox, o3o3x3o3x4o - saborx, o3o3o3x3x4x - grox, o3o3x3x3x4o - gaborx
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.